Arakelov Geometry and Diophantine Applications

Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophanti...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Peyre, Emmanuel (Editor), Rémond, Gaël (Editor)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2021.
Edition:1st ed. 2021.
Series:Lecture Notes in Mathematics ; 2276.
Subjects:
Online Access: Full text (Wentworth users only)

MARC

LEADER 00000cam a22000005i 4500
001 w2586398
005 20230509172053.0
007 cr nn 008mamaa
008 210310s2021 gw | s |||| 0|eng d
020 |a 9783030575595  |9 978-3-030-57559-5 
024 7 |a 10.1007/978-3-030-57559-5  |2 doi 
035 |a (DE-He213)978-3-030-57559-5 
040 |d UtOrBLW 
049 |a WENN 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
245 0 0 |a Arakelov Geometry and Diophantine Applications  |h [electronic resource] /  |c edited by Emmanuel Peyre, Gaël Rémond. 
250 |a 1st ed. 2021. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2021. 
300 |a X, 469 pages :  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2276 
520 |a Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry. 
650 0 |a Number theory.  |0 sh 85093222  
650 0 |a Geometry, Algebraic.  |0 sh 85054140  
700 1 |a Peyre, Emmanuel,  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt  |0 no 99028732  
700 1 |a Rémond, Gaël,  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt  |0 nb2021004760 
710 2 |a SpringerLink (Online service)  |0 no2005046756 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030575588 
776 0 8 |i Printed edition:  |z 9783030575601 
830 0 |a Lecture Notes in Mathematics ;  |v 2276. 
951 |a 2586398 
999 f f |i 918509d5-81dc-5b5a-9fd0-3fa22b9634d7  |s c0e4c4a1-cf9d-5a4b-a51d-bd3e686e7bf7  |t 0 
952 f f |a Wentworth Institute of Technology  |b Main Campus  |c Wentworth Library  |d Ebooks  |t 0  |e Springer  |h Other scheme 
856 4 0 |t 0  |u https://ezproxywit.flo.org/login?qurl=https://doi.org/10.1007/978-3-030-57559-5  |y Full text (Wentworth users only)