Geometry and Analysis of Metric Spaces via Weighted Partitions

The aim of these lecture notes is to propose a systematic framework for geometry and analysis on metric spaces. The central notion is a partition (an iterated decomposition) of a compact metric space. Via a partition, a compact metric space is associated with an infinite graph whose boundary is the...

Full description

Saved in:
Bibliographic Details
Main Author: Kigami, Jun (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2020.
Edition:1st ed. 2020.
Series:Lecture Notes in Mathematics ; 2265.
Subjects:
Online Access: Full text (Wentworth users only)

MARC

LEADER 00000cam a22000005i 4500
001 w2551950
005 20230509172033.0
007 cr nn 008mamaa
008 201116s2020 gw | s |||| 0|eng d
020 |a 9783030541545  |9 978-3-030-54154-5 
024 7 |a 10.1007/978-3-030-54154-5  |2 doi 
035 |a (DE-He213)978-3-030-54154-5 
040 |d UtOrBLW 
049 |a WENN 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Kigami, Jun,  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut  |0 n 97027694  
245 1 0 |a Geometry and Analysis of Metric Spaces via Weighted Partitions  |h [electronic resource] /  |c by Jun Kigami. 
250 |a 1st ed. 2020. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2020. 
300 |a VIII, 164 pages 10 illustrations :  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2265 
520 |a The aim of these lecture notes is to propose a systematic framework for geometry and analysis on metric spaces. The central notion is a partition (an iterated decomposition) of a compact metric space. Via a partition, a compact metric space is associated with an infinite graph whose boundary is the original space. Metrics and measures on the space are then studied from an integrated point of view as weights of the partition. In the course of the text: It is shown that a weight corresponds to a metric if and only if the associated weighted graph is Gromov hyperbolic. Various relations between metrics and measures such as bilipschitz equivalence, quasisymmetry, Ahlfors regularity, and the volume doubling property are translated to relations between weights. In particular, it is shown that the volume doubling property between a metric and a measure corresponds to a quasisymmetry between two metrics in the language of weights. The Ahlfors regular conformal dimension of a compact metric space is characterized as the critical index of p-energies associated with the partition and the weight function corresponding to the metric. These notes should interest researchers and PhD students working in conformal geometry, analysis on metric spaces, and related areas. 
650 0 |a Geometry.  |0 sh 85054133  
650 0 |a Mathematical analysis.  |0 sh 85082116  
650 0 |a Analysis (Mathematics) 
650 0 |a Geometry, Hyperbolic.  |0 sh 85054149  
650 0 |a Measure theory.  |0 sh 85082702  
650 0 |a Topology.  |0 sh 85136089  
710 2 |a SpringerLink (Online service)  |0 no2005046756 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030541538 
776 0 8 |i Printed edition:  |z 9783030541552 
830 0 |a Lecture Notes in Mathematics ;  |v 2265. 
951 |a 2551950 
999 f f |i 3a4bb127-e7d6-51d6-883c-66913e2db67d  |s 7b953d9f-fbd5-59ad-82a3-8bb3ed59d7a6  |t 0 
952 f f |a Wentworth Institute of Technology  |b Main Campus  |c Wentworth Library  |d Ebooks  |t 0  |e Springer  |h Other scheme 
856 4 0 |t 0  |u https://ezproxywit.flo.org/login?qurl=https://doi.org/10.1007/978-3-030-54154-5  |y Full text (Wentworth users only)