Deep Reinforcement Learning Fundamentals, Research and Applications /
Deep reinforcement learning (DRL) is the combination of reinforcement learning (RL) and deep learning. It has been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine, and famously contributed to the success of AlphaGo. Furthermore, it opens up...
Saved in:
Corporate Author: | |
---|---|
Other Authors: | , , |
Format: | Electronic eBook |
Language: | English |
Published: |
Singapore :
Springer Singapore : Imprint: Springer,
2020.
|
Edition: | 1st ed. 2020. |
Subjects: | |
Online Access: |
Full text (Wentworth users only) |
MARC
LEADER | 00000cam a22000005i 4500 | ||
---|---|---|---|
001 | w2533406 | ||
005 | 20230509172018.0 | ||
007 | cr nn 008mamaa | ||
008 | 200629s2020 si | s |||| 0|eng d | ||
020 | |a 9789811540950 |9 978-981-15-4095-0 | ||
024 | 7 | |a 10.1007/978-981-15-4095-0 |2 doi | |
035 | |a (DE-He213)978-981-15-4095-0 | ||
040 | |d UtOrBLW | ||
049 | |a WENN | ||
050 | 4 | |a Q325.5-.7 | |
050 | 4 | |a TK7882.P3 | |
072 | 7 | |a UYQM |2 bicssc | |
072 | 7 | |a COM004000 |2 bisacsh | |
072 | 7 | |a UYQM |2 thema | |
082 | 0 | 4 | |a 006.31 |2 23 |
245 | 0 | 0 | |a Deep Reinforcement Learning |h [electronic resource] : |b Fundamentals, Research and Applications / |c edited by Hao Dong, Zihan Ding, Shanghang Zhang. |
250 | |a 1st ed. 2020. | ||
264 | 1 | |a Singapore : |b Springer Singapore : |b Imprint: Springer, |c 2020. | |
300 | |a XXVII, 514 pages 489 illustrations, 208 illustrations in color : |b online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
505 | 0 | |a Preface -- Contributors -- Acknowledgements -- Mathematical Notation -- Acronyms -- Introduction -- Part 1: Foundamentals -- Chapter 1: Introduction to Deep Learning -- Chapter 2: Introduction to Reinforcement Learning -- Chapter 3: Taxonomy of Reinforcement Learning Algorithms -- Chapter 4: Deep Q-Networks -- Chapter 5: Policy Gradient -- Chapter 6: Combine Deep Q-Networks with Actor-Critic -- Part II: Research -- Chapter 7: Challenges of Reinforcement Learning -- Chapter 8: Imitation Learning -- Chapter 9: Integrating Learning and Planning -- Chapter 10: Hierarchical Reinforcement Learning -- Chapter 11: Multi-Agent Reinforcement Learning -- Chapter 12: Parallel Computing -- Part III: Applications -- Chapter 13: Learning to Run -- Chapter 14: Robust Image Enhancement -- Chapter 15: AlphaZero -- Chapter 16: Robot Learning in Simulation -- Chapter 17: Arena Platform for Multi-Agent Reinforcement Learning -- Chapter 18: Tricks of Implementation -- Part IV: Summary -- Chapter 19: Algorithm Table -- Chapter 20: Algorithm Cheatsheet. | |
520 | |a Deep reinforcement learning (DRL) is the combination of reinforcement learning (RL) and deep learning. It has been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine, and famously contributed to the success of AlphaGo. Furthermore, it opens up numerous new applications in domains such as healthcare, robotics, smart grids and finance. Divided into three main parts, this book provides a comprehensive and self-contained introduction to DRL. The first part introduces the foundations of deep learning, reinforcement learning (RL) and widely used deep RL methods and discusses their implementation. The second part covers selected DRL research topics, which are useful for those wanting to specialize in DRL research. To help readers gain a deep understanding of DRL and quickly apply the techniques in practice, the third part presents mass applications, such as the intelligent transportation system and learning to run, with detailed explanations. The book is intended for computer science students, both undergraduate and postgraduate, who would like to learn DRL from scratch, practice its implementation, and explore the research topics. It also appeals to engineers and practitioners who do not have strong machine learning background, but want to quickly understand how DRL works and use the techniques in their applications. | ||
650 | 0 | |a Machine learning. |0 sh 85079324 | |
650 | 0 | |a Data mining. |0 sh 97002073 | |
650 | 0 | |a Optical data processing. |0 sh 85095143 | |
650 | 0 | |a Robotics. |0 sh 85114628 | |
650 | 0 | |a Computer programming. |0 sh 85107310 | |
650 | 0 | |a Natural language processing (Computer science) |0 sh 88002425 | |
700 | 1 | |a Dong, Hao, |e editor. |0 (orcid)0000-0002-7984-9909 |1 https://orcid.org/0000-0002-7984-9909 |4 edt |4 http://id.loc.gov/vocabulary/relators/edt | |
700 | 1 | |a Ding, Zihan, |e editor. |0 (orcid)0000-0002-6294-888X |1 https://orcid.org/0000-0002-6294-888X |4 edt |4 http://id.loc.gov/vocabulary/relators/edt | |
700 | 1 | |a Zhang, Shanghang, |e editor. |0 (orcid)0000-0003-4047-3526 |1 https://orcid.org/0000-0003-4047-3526 |4 edt |4 http://id.loc.gov/vocabulary/relators/edt | |
710 | 2 | |a SpringerLink (Online service) |0 no2005046756 | |
773 | 0 | |t Springer Nature eBook | |
776 | 0 | 8 | |i Printed edition: |z 9789811540943 |
776 | 0 | 8 | |i Printed edition: |z 9789811540967 |
776 | 0 | 8 | |i Printed edition: |z 9789811540974 |
951 | |a 2533406 | ||
999 | f | f | |i c7a8e193-db39-5de5-afd6-6b3096d150b5 |s 836e75d5-1ca6-51d5-900b-0a9c3dae838a |t 0 |
952 | f | f | |a Wentworth Institute of Technology |b Main Campus |c Wentworth Library |d Ebooks |t 0 |e Springer |h Other scheme |
856 | 4 | 0 | |t 0 |u https://ezproxywit.flo.org/login?qurl=https://doi.org/10.1007/978-981-15-4095-0 |y Full text (Wentworth users only) |