Mathematical aspects of numerical solution of hyperbolic systems /

This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such syste...

Full description

Saved in:
Bibliographic Details
Main Authors: Kulikovskiĭ, A. G. (Andreĭ Gennadievich) (Author), Pogorelov, Nikolai V. (Author), Semenov, A. Yu. (Andrei Yurievich), 1955- (Author)
Corporate Author: Taylor and Francis
Format: Electronic eBook
Language:English
Published: Boca Raton, FL : Chapman and Hall/CRC, an imprint of Taylor and Francis, 2000.
Edition:First edition.
Series:Chapman & Hall/CRC monographs and surveys in pure and applied mathematics.
Subjects:
Online Access: Full text (WIT users only)

MARC

LEADER 00000cam a2200000ui 4500
001 w2449189
005 20240610142150.0
008 180611s2000 fluab ob 001 0 eng d
020 |a 9780429175435  |q (e-book : PDF) 
035 |a (OCoLC)45223521 
035 |a 9780429175435 
040 |a FlBoTFG  |c FlBoTFG  |e rda  |d UtOrBLW 
049 |a WENN 
050 4 |a QA377 
072 7 |a MAT  |x 007000   |2 bisacsh 
072 7 |a MAT  |x 021000   |2 bisacsh 
072 7 |a MAT  |x 003000   |2 bisacsh 
072 7 |a PBKJ   |2 bicscc 
082 0 4 |a 515/.353  |2 23 
100 1 |a Kulikovskiĭ, A. G.  |q (Andreĭ Gennadievich),  |e author.  |0 nr 92019292  
245 1 0 |a Mathematical aspects of numerical solution of hyperbolic systems /  |c by A.G. Kulikovskii, N.V. Pogorelov and A. Yu. Semenov. 
250 |a First edition. 
264 1 |a Boca Raton, FL :  |b Chapman and Hall/CRC, an imprint of Taylor and Francis,  |c 2000. 
300 |a 1 online resource (560 pages) :  |b 1 illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Monographs and surveys in pure and applied mathematics, Chapman & Hall/CRC 
505 0 |a chapter 1 Hyperbolic Systems of Partial Differential Equations -- chapter 2 Numerical Solution of Quasilinear Hyperbolic Systems -- chapter 3 Gas Dynamic Equations -- chapter 4 Shallow Water Equations -- chapter 5 Magnetohydrodynamic Equations -- chapter 6 Solid Dynamics Equations -- chapter 7 Nonclassical Discontinuities and Solutions of Hyperbolic Systems. 
520 3 |a This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics, magnetohydrodynamics (MHD), shallow water, and solid dynamics equations. This treatment provides-for the first time in book form-a collection of recipes for applying higher-order non-oscillatory shock-capturing schemes to MHD modelling of physical phenomena. The authors also address a number of original "nonclassical" problems, such as shock wave propagation in rods and composite materials, ionization fronts in plasma, and electromagnetic shock waves in magnets. They show that if a small-scale, higher-order mathematical model results in oscillations of the discontinuity structure, the variety of admissible discontinuities can exhibit disperse behavior, including some with additional boundary conditions that do not follow from the hyperbolic conservation laws. Nonclassical problems are accompanied by a multiple nonuniqueness of solutions. The authors formulate several selection rules, which in some cases easily allow a correct, physically realizable choice.This work systematizes methods for overcoming the difficulties inherent in the solution of hyperbolic systems. Its unique focus on applications, both traditional and new, makes Mathematical Aspects of Numerical Solution of Hyperbolic Systems particularly valuable not only to those interested the development of numerical methods, but to physicists and engineers who strive to solve increasingly complicated nonlinear equations. 
650 0 |a Differential equations, Hyperbolic  |x Numerical solutions.  |0 sh 85037900  
700 1 |a Pogorelov, Nikolai V.,  |e author.  |0 n 00006661  
700 1 |a Semenov, A. Yu.  |q (Andrei Yurievich),  |d 1955-  |e author.  |0 n 00007817  
710 2 |a Taylor and Francis. 
776 0 8 |i Print version:   |z 9780849306082 
830 0 |a Chapman & Hall/CRC monographs and surveys in pure and applied mathematics.  |0 n 98108164  
951 |a 2449189 
999 f f |i 3ff86932-aaa0-5d20-8829-ab6472667e75  |s 2c4cfa6a-bfee-504d-9d3c-2a3543483e5f  |t 0 
952 f f |a Wentworth Institute of Technology  |b Main Campus  |c Wentworth Library  |d Ebooks  |t 0  |e CRC  |h Other scheme 
856 4 0 |t 0  |u https://ezproxywit.flo.org/login?qurl=https://www.taylorfrancis.com/books/9781482273991  |y Full text (WIT users only)