Arthur's Invariant Trace Formula and Comparison of Inner Forms

This monograph provides an accessible and comprehensive introduction to James Arthur’s invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur’s research and writing into one volume, treating a highly detailed and often difficult sub...

Full description

Saved in:
Bibliographic Details
Main Author: Flicker, Yuval Z. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Subjects:
Online Access: Full text (Wentworth users only)

MARC

LEADER 00000cam a22000005i 4500
001 w2094954
005 20240610133818.0
007 cr nn 008mamaa
008 160914s2016 gw | s |||| 0|eng d
020 |a 9783319315935  |9 978-3-319-31593-5 
024 7 |a 10.1007/978-3-319-31593-5  |2 doi 
035 |a (DE-He213)978-3-319-31593-5 
040 |d UtOrBLW 
049 |a WENN 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Flicker, Yuval Z.,  |e author. 
245 1 0 |a Arthur's Invariant Trace Formula and Comparison of Inner Forms  |h [electronic resource] /  |c by Yuval Z. Flicker. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XI, 567 pages 3 illustrations :  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Local Theory -- Arthur's Noninvariant Trace Formula -- Study of Non-Invariance -- The Invariant Trace Formula -- Main Comparison. 
520 |a This monograph provides an accessible and comprehensive introduction to James Arthur’s invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur’s research and writing into one volume, treating a highly detailed and often difficult subject in a clearer and more uniform manner without sacrificing any technical details. The book begins with a brief overview of Arthur’s work and a proof of the correspondence between GL(n) and its inner forms in general. Subsequent chapters develop the invariant trace formula in a form fit for applications, starting with Arthur’s proof of the basic, non-invariant trace formula, followed by a study of the non-invariance of the terms in the basic trace formula, and, finally, an in-depth look at the development of the invariant formula. The final chapter illustrates the use of the formula by comparing it for G’ = GL(n) and its inner form G and for functions with matching orbital integrals. Arthur’s Invariant Trace Formula and Comparison of Inner Forms will appeal to advanced graduate students, researchers, and others interested in automorphic forms and trace formulae. Additionally, it can be used as a supplemental text in graduate courses on representation theory. 
650 0 |a Mathematics.  |0 sh 85082139  
650 0 |a Group theory.  |0 sh 85057512  
650 0 |a Matrices.  |0 sh 85082210  
650 0 |a Algebra.  |0 sh 85003425  
650 0 |a Topological groups.  |0 sh 85136082  
650 0 |a Lie groups.  |0 sh 85076786  
650 0 |a Number theory.  |0 sh 85093222  
710 2 |a SpringerLink (Online service)  |0 no2005046756 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319315911 
951 |a 2094954 
999 f f |i 6d9d3c47-cb5a-5c18-9060-594346c2f7df  |s 032941bb-cea2-5ba5-b7cf-0f11390b10f9  |t 0 
952 f f |a Wentworth Institute of Technology  |b Main Campus  |c Wentworth Library  |d Ebooks  |t 0  |e Springer  |h Other scheme 
856 4 0 |t 0  |u https://ezproxywit.flo.org/login?qurl=https://dx.doi.org/10.1007/978-3-319-31593-5  |y Full text (Wentworth users only)