An introduction to LTE LTE, LTE-advanced, SAE, VoLTE and 4G mobile communications /

Following on from the successful first edition (March 2012), this book gives a clear explanation of what LTE does and how it works. The content is expressed at a systems level, offering readers the opportunity to grasp the key factors that make LTE the hot topic amongst vendors and operators across...

Full description

Saved in:
Bibliographic Details
Main Author: Cox, Christopher (Christopher Ian), 1965-
Format: Electronic eBook
Language:English
Published: Chichester, West Sussex, United Kingdon ; Hoboken, New Jersey : John Wiley & Sons, Inc., [2014]
Subjects:
Online Access: Full text (Wentworth users only)
Table of Contents:
  • 1.1. Architectural Review of UMTS and GSM
  • 1.1.1. High-Level Architecture
  • 1.1.2. Architecture of the Radio Access Network
  • 1.1.3. Architecture of the Core Network
  • 1.1.4.Communication Protocols
  • 1.2. History of Mobile Telecommunication Systems
  • 1.2.1. From 1G to 3G
  • 1.2.2. Third Generation Systems
  • 1.3. The Need for LTE
  • 1.3.1. The Growth of Mobile Data
  • 1.3.2. Capacity of a Mobile Telecommunication System
  • 1.3.3. Increasing the System Capacity
  • 1.3.4. Additional Motivations
  • 1.4. From UMTS to LTE
  • 1.4.1. High-Level Architecture of LTE
  • 1.4.2. Long-Term Evolution
  • 1.4.3. System Architecture Evolution
  • 1.4.4. LTE Voice Calls
  • 1.4.5. The Growth bf LTE
  • 1.5. From LTE to LTE-Advanced
  • 1.5.1. The ITU Requirements for 4G
  • 1.5.2. Requirements of LTE-Advanced
  • 1.5.3.4G Communication Systems
  • 1.5.4. The Meaning of 4G
  • 1.6. The 3GPP Specifications for LTE
  • References
  • 2.1. High-Level Architecture of LTE
  • 2.2. User Equipment.
  • 2.2.1. Architecture of the UE
  • 2.2.2. UE Capabilities
  • 2.3. Evolved UMTS Terrestrial Radio Access Network
  • 2.3.1. Architecture of the E-UTRAN
  • 2.3.2. Transport Network
  • 2.3.3. Small Cells and the Home eNB
  • 2.4. Evolved Packet Core
  • 2.4.1. Architecture of the EPC
  • 2.4.2. Roaming Architecture
  • 2.4.3.Network Areas
  • 2.4.4. Numbering, Addressing and Identification
  • 2.5.Communication Protocols
  • 2.5.1. Protocol Model
  • 2.5.2. Air Interface Transport Protocols
  • 2.5.3. Fixed Network Transport Protocols
  • 2.5.4. User Plane Protocols
  • 2.5.5. Signalling Protocols
  • 2.6. Example Signalling Flows
  • 2.6.1. Access Stratum Signalling
  • 2.6.2. Non-Access Stratum Signalling
  • 2.7. Bearer Management
  • 2.7.1. The EPS Bearer
  • 2.7.2. Default and Dedicated Bearers
  • 2.7.3. Bearer Implementation Using GTP
  • 2.7.4. Bearer Implementation Using GRE and PMIP
  • 2.7.5. Signalling Radio Bearers
  • 2.8. State Diagrams
  • 2.8.1. EPS Mobility Management.
  • 2.8.2. EPS Connection Management
  • 2.8.3. Radio Resource Control
  • 2.9. Spectrum Allocation
  • References
  • 3.1. Radio Transmission and Reception
  • 3.1.1. Carrier Signal
  • 3.1.2. Modulation Techniques
  • 3.1.3. The Modulation Process
  • 3.1.4. The Demodulation Process
  • 3.1.5. Channel Estimation
  • 3.1.6. Bandwidth of the Modulated Signal
  • 3.2. Radio Transmission in a Mobile Cellular Network
  • 3.2.1. Multiple Access Techniques
  • 3.2.2. FDD and TDD Modes
  • 3.3. Impairments to the Received Signal
  • 3.3.1. Propagation Loss
  • 3.3.2. Noise and Interference
  • 3.3.3. Multipath and Fading
  • 3.3.4. Inter-symbol Interference
  • 3.4. Error Management
  • 3.4.1. Forward Error Correction
  • 3.4.2. Automatic Repeat Request
  • 3.4.3. Hybrid ARQ
  • References
  • 4.1. Principles of OFDMA
  • 4.1.1. Sub-carriers
  • 4.1.2. The OFDM Transmitter
  • 4.1.3. The OFDM Receiver
  • 4.1.4. The Fast Fourier Transform
  • 4.1.5. Block Diagram of OFDMA
  • 4.1.6. Details of the Fourier Transform.
  • 4.2. Benefits and Additional Features of OFDMA
  • 4.2.1. Orthogonal Sub-carriers
  • 4.2.2. Choice of Sub-carrier Spacing
  • 4.2.3. Frequency-Specific Scheduling
  • 4.2.4. Reduction of Inter-symbol Interference
  • 4.2.5. Cyclic Prefix Insertion
  • 4.2.6. Choice of Symbol Duration
  • 4.2.7. Fractional Frequency Re-use
  • 4.3. Single Carrier Frequency Division Multiple Access
  • 4.3.1. Power Variations From OFDMA
  • 4.3.2. Block Diagram of SC-FDMA
  • References
  • 5.1. Diversity Processing
  • 5.1.1. Receive Diversity
  • 5.1.2. Closed Loop Transmit Diversity
  • 5.1.3. Open Loop Transmit Diversity
  • 5.2. Spatial Multiplexing
  • 5.2.1. Principles of Operation
  • 5.2.2. Open Loop Spatial Multiplexing
  • 5.2.3. Closed Loop Spatial Multiplexing
  • 5.2.4. Matrix Representation
  • 5.2.5. Implementation Issues
  • 5.2.6. Multiple User MIMO
  • 5.3. Beamforming
  • 5.3.1. Principles of Operation
  • 5.3.2. Beam Steering
  • 5.3.3. Downlink Multiple User MIMO Revisited
  • References.
  • 6.1. Air Interface Protocol Stack
  • 6.2. Logical, Transport and Physical Channels
  • 6.2.1. Logical Channels
  • 6.2.2. Transport Channels
  • 6.2.3. Physical Data Channels
  • 6.2.4. Control Information
  • 6.2.5. Physical Control Channels
  • 6.2.6. Physical Signals
  • 6.2.7. Information Flows
  • 6.3. The Resource Grid
  • 6.3.1. Slot Structure
  • 6.3.2. Frame Structure
  • 6.3.3. Uplink Timing Advance
  • 6.3.4. Resource Grid Structure
  • 6.3.5. Bandwidth Options
  • 6.4. Multiple Antenna Transmission
  • 6.4.1. Downlink Antenna Ports
  • 6.4.2. Downlink Transmission Modes
  • 6.5. Resource Element Mapping
  • 6.5.1. Downlink Resource Element Mapping
  • 6.5.2. Uplink Resource Element Mapping
  • References
  • 7.1. Acquisition Procedure
  • 7.2. Synchronization Signals
  • 7.2.1. Physical Cell Identity
  • 7.2.2. Primary Synchronization Signal
  • 7.2.3. Secondary Synchronization Signal
  • 7.3. Downlink Reference Signals
  • 7.4. Physical Broadcast Channel.
  • 7.5. Physical Control Format Indicator Channel
  • 7.6. System Information
  • 7.6.1.Organization of the System Information
  • 7.6.2. Transmission and Reception of the System Information
  • 7.7. Procedures after Acquisition
  • References
  • 8.1. Data Transmission Procedures
  • 8.1.1. Downlink Transmission and Reception
  • 8.1.2. Uplink Transmission and Reception
  • 8.1.3. Semi Persistent Scheduling
  • 8.2. Transmission of Scheduling Messages on the PDCCH
  • 8.2.1. Downlink Control Information
  • 8.2.2. Resource Allocation
  • 8.2.3. Example: DCI Format 1
  • 8.2.4. Radio Network Temporary Identifiers
  • 8.2.5. Transmission and Reception of the PDCCH
  • 8.3. Data Transmission on the PDSCH and PUSCH
  • 8.3.1. Transport Channel Processing
  • 8.3.2. Physical Channel Processing
  • 8.4. Transmission of Hybrid ARQ Indicators on the PHICH
  • 8.4.1. Introduction
  • 8.4.2. Resource Element Mapping of the PHICH
  • 8.4.3. Physical Channel Processing of the PHICH.
  • 8.5. Uplink Control Information
  • 8.5.1. Hybrid ARQ Acknowledgements
  • 8.5.2. Channel Quality Indicator
  • 8.5.3. Rank Indication
  • 8.5.4. Precoding Matrix Indicator
  • 8.5.5. Channel State Reporting Mechanisms
  • 8.5.6. Scheduling Requests
  • 8.6. Transmission of Uplink Control Information on the PUCCH
  • 8.6.1. PUCCH Formats
  • 8.6.2. PUCCH Resources
  • 8.6.3. Physical Channel Processing of the PUCCH
  • 8.7. Uplink Reference Signals
  • 8.7.1. Demodulation Reference Signal
  • 8.7.2. Sounding Reference Signal
  • 8.8. Power Control
  • 8.8.1. Uplink Power Calculation
  • 8.8.2. Uplink Power Control Commands
  • 8.8.3. Downlink Power Control
  • 8.9. Discontinuous Reception
  • 8.9.1. Discontinuous Reception and Paging in RRC_IDLE
  • 8.9.2. Discontinuous Reception in RRC_CONNECTED
  • References
  • 9.1. Transmission of Random Access Preambles on the PRACH
  • 9.1.1. Resource Element Mapping
  • 9.1.2. Preamble Sequence Generation
  • 9.1.3. Signal Transmission.
  • 9.2. Non-Contention-Based Procedure
  • 9.3. Contention-Based Procedure
  • References
  • 10.1. Medium Access Control Protocol
  • 10.1.1. Protocol Architecture
  • 10.1.2. Timing Advance Commands
  • 10.1.3. Buffer Status Reporting
  • 10.1.4. Power Headroom Reporting
  • 10.1.5. Multiplexing and De-multiplexing
  • 10.1.6. Logical Channel Prioritization
  • 10.1.7. Scheduling of Transmissions on the Air Interface
  • 10.2. Radio Link Control Protocol
  • 10.2.1. Protocol Architecture
  • 10.2.2. Transparent Mode
  • 10.2.3. Unacknowledged Mode
  • 10.2.4. Acknowledged Mode
  • 10.3. Packet Data Convergence Protocol
  • 10.3.1. Protocol Architecture
  • 10.3.2. Header Compression
  • 10.3.3. Prevention of Packet Loss during Handover
  • References
  • 11.1. Power-On Sequence
  • 11.2.Network and Cell Selection
  • 11.2.1.Network Selection
  • 11.2.2. Closed Subscriber Group Selection
  • 11.2.3. Cell Selection
  • 11.3. RRC Connection Establishment
  • 11.3.1. Basic Procedure.
  • 11.3.2. Relationship with Other Procedures
  • 11.4. Attach Procedure
  • 11.4.1. IP Address-Allocation
  • 11.4.2. Overview of the Attach Procedure
  • 11.4.3. Attach Request
  • 11.4.4. Identification and Security Procedures
  • 11.4.5. Location Update
  • 11.4.6. Default Bearer Creation
  • 11.4.7. Attach Accept
  • 11.4.8. Default Bearer Update
  • 11.5. Detach Procedure
  • References
  • 12.1.Network Access Security
  • 12.1.1. Security Architecture
  • 12.1.2. Key Hierarchy
  • 12.1.3. Authentication and Key Agreement
  • 12.1.4. Security Activation
  • 12.1.5. Ciphering
  • 12.1.6. Integrity Protection
  • 12.2.Network Domain Security
  • 12.2.1. Security Protocols
  • 12.2.2. Security in the Evolved Packet Core
  • 12.2.3. Security in the Radio Access Network
  • References
  • 13.1. Policy and Charging Control
  • 13.1.1. Quality of Service Parameters
  • 13.1.2. Service Data Flows
  • 13.1.3. Charging Parameters
  • 13.1.4. Policy and Charging Control Rules.
  • 13.2. Policy and Charging Control Architecture
  • 13.2.1. Basic PCC Architecture
  • 13.2.2. Local Breakout Architecture
  • 13.2.3. Architecture Using a PMIP Based S5/S8
  • 13.2.4. Software Protocols
  • 13.3. Session Management Procedures
  • 13.3.1. IP-CAN Session Establishment
  • 13.3.2. Mobile Originated SDF Establishment
  • 13.3.3. Server Originated SDF Establishment
  • 13.3.4. Dedicated Bearer Establishment
  • 13.3.5. PDN Connectivity Establishment
  • 13.3.6. Other Session Management Procedures
  • 13.4. Data Transport in the Evolved Packet Core
  • 13.4.1. Packet Handling at the PDN Gateway
  • 13.4.2. Data Transport Using GTP
  • 13.4.3. Differentiated Services
  • 13.4.4. Multiprotocol Label Switching
  • 13.4.5. Data Transport Using GRE and PMIP
  • 13.5. Charging and Billing
  • 13.5.1. High Level Architecture
  • 13.5.2. Offline Charging
  • 13.5.3. Online Charging
  • References
  • 14.1. Transitions between Mobility Management States
  • 14.1.1.S1 Release Procedure.
  • 14.1.2. Paging Procedure
  • 14.1.3. Service Request Procedure
  • 14.2. Cell Reselection in RRC_IDLE
  • 14.2.1. Objectives
  • 14.2.2. Measurement Triggering on the Same LTE Frequency
  • 14.2.3. Cell Reselection to the Same LTE Frequency
  • 14.2.4. Measurement Triggering on a Different LTE Frequency
  • 14.2.5. Cell Reselection to a Different LTE Frequency
  • 14.2.6. Fast Moving Mobiles
  • 14.2.7. Tracking Area Update Procedure
  • 14.2.8.Network Reselection
  • 14.3. Measurements in RRC_CONNECTED
  • 14.3.1. Objectives
  • 14.3.2. Measurement Procedure
  • 14.3.3. Measurement Reporting
  • 14.3.4. Measurement Gaps
  • 14.4. Handover in RRC_CONNECTED
  • 14.4.1.X2 Based Handover Procedure
  • 14.4.2. Handover Variations
  • References
  • 15.1. System Architecture
  • 15.1.1. Architecture of the 2G/3G Packet Switched Domain
  • 15.1.2.S3/S4-Based Inter-operation Architecture
  • 15.1.3. Gn/Gp-Based Inter-operation Architecture
  • 15.2. Power-On Procedures.
  • 15.3. Mobility Management in RRC_IDLE
  • 15.3.1. Cell Reselection
  • 15.3.2. Routing Area Update Procedure
  • 15.3.3. Idle Mode Signalling Reduction
  • 15.4. Mobility Management in RRC_CONNECTED
  • 15.4.1. RRC Connection Release with Redirection
  • 15.4.2. Measurement Procedures
  • 15.4.3. Optimized Handover
  • References
  • 16.1. Generic System Architecture
  • 16.1.1.Network-Based Mobility Architecture
  • 16.1.2. Host-Based Mobility Architecture
  • 16.1.3. Access Network Discovery and Selection Function
  • 16.2. Generic Signalling Procedures
  • 16.2.1. Overview of the Attach Procedure
  • 16.2.2. Authentication and Key Agreement
  • 16.2.3. PDN Connectivity Establishment
  • 16.2.4. Radio Access Network Reselection
  • 16.3. Inter-Operation with cdma2000 HRPD
  • 16.3.1. System Architecture
  • 16.3.2. Preregistration with cdma2000
  • 16.3.3. Cell Reselection in RRC_IDLE
  • 16.3.4. Measurements and Handover in RRC_CONNECTED
  • References
  • 17.1. Self-Configuration of an eNB.
  • 17.1.1. Automatic Configuration of the Physical Cell Identity
  • 17.1.2. Automatic Neighbour Relations
  • 17.1.3. Random Access Channel Optimization
  • 17.2. Inter-Cell Interference Coordination
  • 17.3. Mobility Management
  • 17.3.1. Mobility Load Balancing
  • 17.3.2. Mobility Robustness Optimization
  • 17.3.3. Energy Saving
  • 17.4. Radio Access Network Information Management
  • 17.4.1. Introduction
  • 17.4.2. Transfer of System Information
  • 17.4.3. Transfer of Self-Optimization Data
  • 17.5. Drive Test Minimization
  • References
  • 18.1. Multimedia Broadcast/Multicast Service
  • 18.1.1. Introduction
  • 18.1.2. Multicast/Broadcast over a Single Frequency Network
  • 18.1.3. Implementation of MBSFN in LTE
  • 18.1.4. Architecture of MBMS
  • 18.1.5. Operation of MBMS
  • 18.2. Location Services
  • 18.2.1. Introduction
  • 18.2.2. Positioning Techniques
  • 18.2.3. Location Service Architecture
  • 18.2.4. Location Service Procedures
  • 18.3. Other Enhancements in Release 9.
  • 18.3.1. Dual Layer Beamforming
  • 18.3.2.Commercial Mobile Alert System
  • References
  • 19.1. Carrier Aggregation
  • 19.1.1. Principles of Operation
  • 19.1.2. UE Capabilities
  • 19.1.3. Scheduling
  • 19.1.4. Data Transmission and Reception
  • 19.1.5. Uplink and Downlink Feedback
  • 19.1.6. Other Physical Layer and MAC Procedures
  • 19.1.7. RRC Procedures
  • 19.2. Enhanced Downlink MIMO
  • 19.2.1. Objectives
  • 19.2.2. Downlink Reference Signals
  • 19.2.3. Downlink Transmission and Feedback
  • 19.3. Enhanced Uplink MIMO
  • 19.3.1. Objectives
  • 19.3.2. Implementation
  • 19.4. Relays
  • 19.4.1. Principles of Operation
  • 19.4.2. Relaying Architecture
  • 19.4.3. Enhancements to the Air Interface
  • 19.5. Heterogeneous Networks
  • 19.5.1. Introduction
  • 19.5.2. Enhanced Inter-Cell Interference Coordination
  • 19.5.3. Enhancements to Self-Optimizing Networks
  • 19.6. Traffic Offload Techniques
  • 19.6.1. Local IP Access
  • 19.6.2. Selective IP Traffic Offload.
  • 19.6.3. Multi-Access PDN Connectivity
  • 19.6.4. IP Flow Mobility
  • 19.7. Overload Control for Machine-Type Communications
  • References
  • 20.1. Coordinated Multipoint Transmission and Reception
  • 20.1.1. Objectives
  • 20.1.2. Scenarios
  • 20.1.3.CoMP Techniques
  • 20.1.4. Standardization
  • 20.1.5. Performance
  • 20.2. Enhanced Physical Downlink Control Channel
  • 20.3. Interference Avoidance for in Device Coexistence
  • 20.4. Machine-Type Communications
  • 20.4.1. Device Triggering
  • 20.4.2. Numbering, Addressing and Identification
  • 20.5. Mobile Data Applications
  • 20.6. New Features in Release 12
  • 20.6.1. Proximity Services and Device to Device Communications
  • 20.6.2. Dynamic Adaptation of the TDD Configuration
  • 20.6.3. Enhancements for Machine-Type Communications and Mobile Data
  • 20.6.4. Traffic Offloading Enhancements
  • 20.7. Release 12 Studies
  • 20.7.1. Enhancements to Small Cells and Heterogeneous Networks.
  • 20.7.2. Elevation Beamforming and Full Dimension MIMO
  • References
  • 21.1. Delivery of Voice and Text Messages over LTE
  • 21.1.1. The Market for Voice and SMS
  • 21.1.2. Third Party Voice over IP
  • 21.1.3. The IP Multimedia Subsystem
  • 21.1.4. VoLGA
  • 21.1.5. Dual Radio Devices
  • 21.1.6. Circuit Switched Fallback
  • 21.2. System Architecture
  • 21.2.1. Architecture of the 2G/3G Circuit Switched Domain
  • 21.2.2. Circuit Switched Fallback Architecture
  • 21.3. Attach Procedure
  • 21.3.1.Combined EPS/IMSI Attach Procedure
  • 21.3.2. Voice Domain Preference and UE Usage Setting
  • 21.4. Mobility Management
  • 21.4.1.Combined Tracking Area/Location Area Update Procedure
  • 21.4.2. Alignment of Tracking Areas and Location Areas
  • 21.4.3. Cell Reselection to UMTS or GSM
  • 21.5. Call Setup
  • 21.5.1. Mobile-Originated Call Setup using RRC Connection Release
  • 21.5.2. Mobile Originated Call Setup using Handover.
  • 21.5.3. Signalling Messages in the Circuit Switched Domain
  • 21.5.4. Mobile-Terminated Call Setup
  • 21.5.5. Returning to LTE
  • 21.6. SMS over SGs
  • 21.6.1. System Architecture
  • 21.6.2. SMS Delivery
  • 21.7. Circuit Switched Fallback to cdma2000 1xRTT
  • 21.8. Performance of Circuit Switched Fallback
  • References
  • 22.1. Introduction
  • 22.1.1. The IP Multimedia Subsystem
  • 22.1.2. VoLTE
  • 22.1.3. Rich Communication Services
  • 22.2. Hardware Architecture of the IMS
  • 22.2.1. High-Level Architecture
  • 22.2.2. Call Session Control Functions
  • 22.2.3. Application Servers
  • 22.2.4. Home Subscriber Server
  • 22.2.5. User Equipment
  • 22.2.6. Relationship with LTE
  • 22.2.7. Border Control Functions
  • 22.2.8. Media Gateway Functions
  • 22.2.9. Multimedia Resource Functions
  • 22.2.10. Security Architecture
  • 22.2.11. Charging Architecture
  • 22.3. Signalling Protocols
  • 22.3.1. Session Initiation Protocol
  • 22.3.2. Session Description Protocol.
  • 22.3.3. Other Signalling Protocols
  • 22.4. Service Provision in the IMS
  • 22.4.1. Service Profiles
  • 22.4.2. Media Feature-Tags
  • 22.4.3. The Multimedia Telephony Service for IMS
  • 22.5. VoLTE Registration Procedure
  • 22.5.1. Introduction
  • 22.5.2. LTE Procedures
  • 22.5.3. Contents of the REGISTER Request
  • 22.5.4. IMS Registration Procedure
  • 22.5.5. Routing of SIP Requests and Responses
  • 22.5.6. Third-Party Registration with Application Servers
  • 22.5.7. Subscription for Network-Initiated Deregistration
  • 22.6. Call Setup and Release
  • 22.6.1. Contents of the INVITE Request
  • 22.6.2. Initial INVITE Request and Response
  • 22.6.3. Acceptance of the Initial INVITE
  • 22.6.4. Establishment of a Call to a Circuit Switched Network
  • 22.6.5. Call Release
  • 22.7. Access Domain Selection
  • 22.7.1. Mobile-Originated Calls
  • 22.7.2. Mobile-Terminated Calls
  • 22.8. Single Radio Voice Call Continuity
  • 22.8.1. Introduction
  • 22.8.2. SRVCC Architecture.
  • 22.8.3. Attach, Registration and Call Setup Procedures
  • 22.8.4. Handover Preparation
  • 22.8.5. Updating the Remote Leg
  • 22.8.6. Releasing the Source Leg
  • 22.8.7. Handover Execution and Completion
  • 22.8.8. Evolution of SRVCC
  • 22.9. IMS Centralized Services
  • 22.10. IMS Emergency Calls
  • 22.10.1. Emergency Call Architecture
  • 22.10.2. Emergency Call Setup Procedure
  • 22.11. Delivery of SMS Messages over the IMS
  • 22.11.1. SMS Architecture
  • 22.11.2. Access Domain Selection
  • References
  • 23.1. Peak Data Rates of LTE and LTE-Advanced
  • 23.1.1. Increase of the Peak Data Rate
  • 23.1.2. Limitations on the Peak Data Rate
  • 23.2. Coverage of an LTE Cell
  • 23.2.1. Uplink Link Budget
  • 23.2.2. Downlink Link Budget
  • 23.2.3. Propagation Modelling
  • 23.2.4. Coverage Estimation
  • 23.3. Capacity of an LTE Cell
  • 23.3.1. Capacity Estimation
  • 23.3.2. Cell Capacity Simulations
  • 23.4. Performance of Voice over IP
  • 23.4.1. AMR Codec Modes.
  • 23.4.2. Transmission of AMR Frames on the Air Interface
  • 23.4.3. Transmission of AMR Frames in the Fixed Network
  • References.