The Breadth of Symplectic and Poisson Geometry Festschrift in Honor of Alan Weinstein /

One of the world’s foremost geometers, Alan Weinstein has made deep contributions to symplectic and differential geometry, Lie theory, mechanics, and related fields. Written in his honor, the invited papers in this volume reflect the active and vibrant research in these areas and are a tribute to We...

Full description

Saved in:
Bibliographic Details
Main Author: Marsden, Jerrold E.
Corporate Author: SpringerLink (Online service)
Other Authors: Rațiu, Tudor S.
Format: Electronic eBook
Language:English
Published: Boston, MA : Birkhäuser Boston, 2005.
Series:Progress in mathematics (Boston, Mass.) ; v. 232.
Subjects:
Online Access: Full text (Wentworth users only).

MARC

LEADER 00000cam a22000005i 4500
001 w1354349
005 20240610123944.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644192  |9 978-0-8176-4419-2 
024 7 |a 10.1007/b138687  |2 doi 
035 |a (DE-He213)978-0-8176-4419-2 
040 |d UtOrBLW 
049 |a WENN 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Marsden, Jerrold E.  |0 n 79077360  
245 1 4 |a The Breadth of Symplectic and Poisson Geometry  |h [electronic resource] :  |b Festschrift in Honor of Alan Weinstein /  |c edited by Jerrold E. Marsden, Tudor S. Ratiu. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2005. 
300 |a XXIII, 654 pages 30 illustrations :  |b digital. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Progress in Mathematics ;  |v 232 
505 0 |a From the contents: Preface -- Academic Genealogy of Alan Weinstein -- About Alan Weinstein -- Bursztyn/Crainic: Dirac structures, momentum maps, and quasi-Poisson manifolds -- Cahen/Gutt/Schwachhöfer: Construction of Ricci-type connections by reduction and induction -- Duistermaat: A mathematical model for geomagnetic reversals -- Ehlers/Koiller/Montgomery/Rios: Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization -- Evens/Lu: Thompson’s conjecture for real semisimple Lie group -- Ginzburg: The Weinstein conjecture and theorems of nearby and almost existence -- Givental/Milanov: Simple singularities and integrable hierarchies -- Holm/Marsden: Mmentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation -- Huebschmann: Higher homotopies and Maurer-Cartan algebras: Quasi-Lie-Rinehart, Gerstenhaber, and Batalin-Vilkovisky algebras -- Jeffrey/Kogan: Localization theorems by symplectic cuts. 
520 |a One of the world’s foremost geometers, Alan Weinstein has made deep contributions to symplectic and differential geometry, Lie theory, mechanics, and related fields. Written in his honor, the invited papers in this volume reflect the active and vibrant research in these areas and are a tribute to Weinstein’s ongoing influence. The well-recognized contributors to this text cover a broad range of topics: Induction and reduction for systems with symmetry, symplectic geometry and topology, geometric quantization, the Weinstein Conjecture, Poisson algebra and geometry, Dirac structures, deformations for Lie group actions, Kähler geometry of moduli spaces, theory and applications of Lagrangian and Hamiltonian mechanics and dynamics, symplectic and Poisson groupoids, and quantum representations. Intended for graduate students and working mathematicians in symplectic and Poisson geometry as well as mechanics, this text is a distillation of prominent research and an indication of the future trends and directions in geometry, mechanics, and mathematical physics. Contributors: H. Bursztyn, M. Cahen, M. Crainic, J. J. Duistermaat, K. Ehlers, S. Evens, V. L. Ginzburg, A. B. Givental, S. Gutt, D. D. Holm, J. Huebschmann, L. Jeffrey, F. Kirwan, M. Kogan, J. Koiller, Y. Kosmann-Schwarzbach, B. Kostant, C. Laurent-Gengoux, J-H. Lu, J. E. Marsden, K. C. H. Mackenzie, Y. Maeda, C-M. Marle, T. E. Milanov, N. Miyazaki, R. Montgomery, Y-G. Oh, J-P. Ortega, H. Omori, T. S. Ratiu, P. M. Rios, L. Schwachhöfer, J. Stasheff, I. Vaisman, A. Yoshioka, P. Xu, and S. Zelditch. 
650 0 |a Mathematics.  |0 sh 85082139  
650 0 |a Topological groups.  |0 sh 85136082  
650 0 |a Geometry.  |0 sh 85054133  
650 0 |a Global differential geometry.  |0 sh 85055286  
650 0 |a Mathematical physics.  |0 sh 85082129  
700 1 |a Rațiu, Tudor S.  |0 n 82094457  
710 2 |a SpringerLink (Online service)  |0 no2005046756 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817635657 
830 0 |a Progress in mathematics (Boston, Mass.) ;  |v v. 232.  |0 n 42019868  
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
951 |a 1354349 
999 f f |i 2849afa6-47f8-5ed6-9041-b098420ac17f  |s bfd0af7a-7366-523f-81e4-e3e456c7b26a  |t 0 
952 f f |a Wentworth Institute of Technology  |b Main Campus  |c Wentworth Library  |d Ebooks  |t 0  |e Springer  |h Other scheme 
856 4 0 |t 0  |u https://ezproxywit.flo.org/login?qurl=https://dx.doi.org/10.1007/b138687  |y Full text (Wentworth users only).