Leray-Schauder Type Alternatives, Complemantarity Problems and Variational Inequalities

Complementarity theory, a relatively new domain in applied mathematics, has deep connections with several aspects of fundamental mathematics and also has many applications in optimization, economics and engineering. The study of variational inequalities is another domain of applied mathematics with...

Full description

Saved in:
Bibliographic Details
Main Author: Isac, George
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Boston, MA : Springer US, 2006.
Series:Nonconvex optimization and its applications ; v. 87.
Subjects:
Online Access: Full text (Wentworth users only).

MARC

LEADER 00000cam a22000005i 4500
001 w1352039
005 20240610123652.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387329000  |9 978-0-387-32900-0 
024 7 |a 10.1007/0-387-32900-5  |2 doi 
035 |a (DE-He213)978-0-387-32900-0 
040 |d UtOrBLW 
049 |a WENN 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Isac, George.  |0 n 88620247  
245 1 0 |a Leray-Schauder Type Alternatives, Complemantarity Problems and Variational Inequalities  |h [electronic resource] /  |c by George Isac. 
264 1 |a Boston, MA :  |b Springer US,  |c 2006. 
300 |a XIV, 338 pages :  |b digital. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Nonconvex Optimization and Its Applications,  |x 1571-568X ;  |v 87 
505 0 |a Preface -- 1. Preliminary notions -- 2. Complementarity problems and variational inequalities -- 3. Leray–Schauder alternatives -- 4. The origin of the notion of exceptional family of elements -- 5. Leray–Schauder type alternatives. Existence theorems -- 6. Infinitesimal exceptional family of elements -- 7. More about the notion of exceptional family of elements -- 8. Exceptional family of elements and variational inequalities -- Bibliography -- Index. 
520 |a Complementarity theory, a relatively new domain in applied mathematics, has deep connections with several aspects of fundamental mathematics and also has many applications in optimization, economics and engineering. The study of variational inequalities is another domain of applied mathematics with many applications to the study of certain problems with unilateral conditions. This book is the first to discuss complementarity theory and variational inequalities using Leray–Schauder type alternatives. The ideas and method presented in this book may be considered as a starting point for new developments. Audience This book is intended for researchers and advanced graduate students in optimization, applied nonlinear analysis, complementarity theory, the theory of variational inequalities, and operations research. 
650 0 |a Mathematics.  |0 sh 85082139  
650 0 |a Functional analysis.  |0 sh 85052312  
650 0 |a Mathematical optimization.  |0 sh 85082127  
710 2 |a SpringerLink (Online service)  |0 no2005046756 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387328980 
830 0 |a Nonconvex optimization and its applications ;  |v v. 87.  |0 n 94023244  
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
951 |a 1352039 
999 f f |i eab8a56c-42d2-598c-86c8-54861540ef40  |s 000e813f-5074-59a8-b2dc-4447b43dc290  |t 0 
952 f f |a Wentworth Institute of Technology  |b Main Campus  |c Wentworth Library  |d Ebooks  |t 0  |e Springer  |h Other scheme 
856 4 0 |t 0  |u https://ezproxywit.flo.org/login?qurl=https://dx.doi.org/10.1007/0-387-32900-5  |y Full text (Wentworth users only).