Sustainable design of research laboratories : planning, design, and operation /

Saved in:
Bibliographic Details
Corporate Author: KlingStubbins
Format: Book
Language:English
Published: Hoboken, N.J. : John Wiley & Sons, [2010]
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 w1105914
005 20230113011926.0
008 091203t20102010njuaf 001 0 eng
010 |a  2009051014 
020 |a 9780470485644 (cloth : alk. paper) 
020 |a 0470485647 (cloth : alk. paper) 
035 |a (OCoLC)474873077 
035 |a 1105914 
040 |a DLC  |c DLC  |d YDX  |d YDXCP  |d CDX  |d NhCcYME  |d UtOrBLW 
049 |a WENN 
050 0 0 |a NA6751  |b .K58 2010 
082 0 0 |a 727/.5  |2 22 
110 2 |a KlingStubbins.  |0 no2009058827 
245 1 0 |a Sustainable design of research laboratories :  |b planning, design, and operation /  |c Kling Stubbins. 
264 1 |a Hoboken, N.J. :  |b John Wiley & Sons,  |c [2010] 
264 4 |c ©2010 
300 |a xvii, 300 pages, 32 unnumbered pages of plates :  |b illustrations (some color) ;  |c 24 cm 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
500 |a Includes index. 
505 0 0 |a Machine generated contents note:   |g ch. 1   |t Introduction --   |t Core Principles --   |t Site Impacts --   |t Resources --   |t Human Factors --   |t Metrics/Rating/Scorecards---Why use Them? --   |t Breeam --   |t Leed --   |t Labs21 --   |t Ashrae Standard 189 --   |t Focus on Energy and Carbon --   |t Laboratory Types --   |t Sustainability Categories --   |t Summary --   |t Key Concepts --   |t References --   |g ch. 2   |t Integrated Design: Working Collaboratively to Achieve Sustainability --   |t Introduction to Integrated Design --   |t Planning an Integrated Design Process --   |t Assembling the Team --   |t Communicating Expectations --   |t Ongoing Interactions --   |t Traditional Sequential Design Versus Integrated Simultaneous Design --   |t Project Tasks in an Integrated Design Process --   |t Research/Evaluation --   |t Criteria/Loads --   |t Orientation and Massing --   |t Envelope Optimization --   |t Glazed Areas --   |t External Solar Controls --   |t High-Performance Glazing --   |t Double-Wall Facades --   |t Demand-Responsive Facades --   |t Dynamic Glazing --   |t Internal Loads --   |t Integrated Design and Building Information Modeling --   |t Conclusion --   |t Key Concepts --   |g ch. 3   |t Programming: Laying the Groundwork for a Sustainable Project --   |t Introduction --   |t Macroprogramming --   |t The Program --   |t Laboratory Module and NSF/Scientist --   |t Building Organization --   |t Building and Floor Plate Efficiency --   |t Equipment Requirements --   |t Program Space for Sustainable Operations --   |t Reduce the Frequency and Scope of Renovations --   |t Microprogramming --   |t Temperature and Relative Humidity --   |t Air Changes --   |t Hours of Operation --   |t Redundancy --   |t Filtering --   |t Plumbing and Process Piping --   |t Power --   |t Lighting --   |t Exhaust Devices --   |t Code Classification --   |t Structural --   |t Equipment --   |t Conclusion --   |t Key Concepts --   |t References --   |g ch. 4   |t Site Design: Connecting to Local and Regional Communities --   |t Introduction --   |t General Principals of Sustainable Site Design --   |t Choosing an Appropriate Site --  
505 0 0 |a Contents note continued:   |t Site Assessment Study---Part 1 --   |t Site Assessment Study---Part 2 --   |t Designing a Project to Fit Sustainably on a Site --   |t Lab-Specific Site Design Considerations --   |t Stormwater Management Techniques --   |t Below Grade Stormwater Storage Chambers --   |t Pervious Pavements in Action --   |t Landscaping Considerations --   |t Conclusion --   |t Key Concepts --   |t References --   |g ch. 5   |t Laboratory Performance: Simulation, Measurement, and Operation Characteristics --   |t Introduction --   |t Energy Modeling --   |t Laboratory Energy Estimation Basics --   |t Energy Modeling Protocols --   |t Energy Analytics --   |t Lifecycle Cost Analysis --   |t Metering for the Sustainable Laboratory Building --   |t Introduction to Metering --   |t What to Meter? --   |t Components of a Metering System --   |t Metering for the Multitenant Laboratory Building --   |t Metering in Federal Government Laboratories --   |t Advancing Metering --   |t The Laboratory Building DashBoard --   |t Measurement and Verification --   |t Introduction --   |t The M&V Plan --   |t M&V Analysis Approach --   |t Metering to Support M&V --   |t Comparison of Measured and Forecasted Loads --   |t Dealing with Uncertainty in M&V --   |t Preparation of the M&V Report --   |t Laboratory Building Commissioning --   |t Conclusion --   |t Key Concepts --   |t References --   |g ch. 6   |t Engineering Systems: Reducing What Goes in and What Comes Out --   |t Introduction --   |t Mechanical and Electrical Demand Reduction --   |t Heating and Cooling Load Profiling --   |t Supply Airflow Required to Offset the Cooling Load --   |t Supply Air Required for Lab Dilution --   |t Supply Air Needed to Makeup Air to Exhaust Elements --   |t Lab Driver Characterization --   |t Perimeter Lab Calculation Example (Interior and Envelope Loads) --   |t Interior Lab Calculation Example (Internal Heat Gains Only) --   |t Reducing Airflow Demand in Load-Driven Labs --   |t Reducing Demand with Envelope Improvement --   |t Reducing Demand Caused by Equipment Heat Gain --   |t Reducing Demand in Hood-Driven Labs --  
505 0 0 |a Contents note continued:   |t Reducing Demand in Air Change-Driven Labs --   |t Energy-Efficient Systems to Meet the Demand --   |t Variable Air Volume Operation --   |t Laboratory Air System Control Technology --   |t Air Distribution Efficiency --   |t Underfloor Air Distribution --   |t Chilled Beams --   |t Glycol Runaround Exhaust Air Energy Recovery --   |t Heat Pipe Exhaust Air Energy Recovery --   |t Exhaust Air Energy Recovery by Energy Wheels --   |t Comparison of Energy Recovery Technologies --   |t Low Pressure Drop Air Distribution --   |t Demand-Controlled Ventilation --   |t Increase Return Air from Labs --   |t Passive-Evaporative Downdraft Cooling --   |t Biowall --   |t Radiant Heating Systems --   |t Low-Energy Cooling and Heating --   |t Heat Pump Systems --   |t Chilled Water Distribution --   |t Ice Storage and Nonelectric Cooling Technologies --   |t Optimum Chiller Configuration --   |t Lake Source Cooling Water --   |t High-Efficiency Condensing Boilers --   |t Heat Recovery from Boilers --   |t Active Solar Heating and Cooling --   |t Refrigerant Selection --   |t Power Generation and Renewable Energy --   |t Photovoltaic Arrays --   |t Wind Turbines --   |t Biomass-Fueled Power Generation --   |t Landfill-Derived Methane-Fueled Generation --   |t Fuel Cells --   |t Co-Generation --   |t Carbon Neutral Laboratory Buildings --   |t Carbon Footprint Reduction --   |t Corporate Carbon Emission Initiatives --   |t Laboratory Water Conservation --   |t Laboratory Water Demand and Consumption --   |t Sustainable Water Systems --   |t Water Supply Concepts --   |t Waste System Concepts --   |t System Cleaning and Testing --   |t Conclusion --   |t Key Concepts --   |t References --   |g ch. 7   |t Indoor Environment: The Health and Happiness of Building Occupants --   |t Introduction --   |t Learning From Corporate Workplace Trends --   |t Costs and Returns --   |t Indoor Air Quality --   |t Contaminants During Construction --   |t Contaminants from Material Offgassing --   |t Contaminants from Occupancy --   |t Chemical Safety/Chemical Dispensing --   |t Separation/Compartmentalization --  
505 0 0 |a Contents note continued:   |t Limited Quantity Usage---Dispensing/Centralized Storage --   |t Thermal Comfort/Occupant Control --   |t Access to Exterior Environment/Daylight --   |t Daylighting in Buildings --   |t Daylighting Process --   |t Shaping the Building for Daylighting---Conclusions --   |t Lighting Design For Laboratories --   |t Luminaire and System Component Selection --   |t Integrated Approach to Lighting Design --   |t Lighting Levels --   |t Lamp Efficeency and Related Selection Considerations --   |t Lighting Design Strategies --   |t Design Impacts on Lighting --   |t Task Lighting --   |t Daylighting and Daylight harvesting --   |t Laboratory Lighting Controls --   |t Conclusion --   |t Key Concepts --   |t References --   |g ch. 8   |t Materials: What is the Sustainable Lab Made of? --   |t Introduction: What Makes Materials Sustainable? --   |t Material Reuse/Refurblshment/Downcycling --   |t Recycled Content and Recyclability of Materials --   |t Harvesting Practices and Transportation --   |t Healthy Materials, VOCs, and Low Toxicity --   |t Sustainable Material Sources --   |t Certifications --   |t What is Different About Laboratory Materials? --   |t Casework --   |t Work Surfaces --   |t Material Selection Metrics --   |t Athena Institute --   |t Cradle to Cradle --   |t Living Building Challenge --   |t BRE Green Guide to Specifications --   |t Ashrae 189 --   |t Material Classification --   |t Flooring --   |t Wall Finishes --   |t FRP and PVC Panels --   |t Reinforced Epoxy Wall Coatings --   |t High-Performance Coatings --   |t Wall Paint --   |t Casework --   |t Ceilings --   |t Conclusions --   |t Key Concepts --   |t References --   |g ch. 9   |t Renovation and Leasing: Alternative Approaches to New Construction --   |t Introduction --   |t Converting Existing Buildings to Laboratory Use --   |t Benefits of Converting an Existing Building to Laboratory Use Compared to New Construction --   |t Conserving Embodied Energy and Reducing Waste --   |t Adaptive Reuse and Leed --   |t Characteristics of a Suitable Existing Building for Conversion to Laboratory Use --  
505 0 0 |a Contents note continued:   |t Evaluation of an Existing Building for Conversion to Laboratory Use --   |t Case Study Examples --   |t Leasing Laboratory Space in Multitenant Buildings --   |t Sustainability Issues Unique to Multitenant Buildings --   |t The Landlord's Motivation --   |t The Tenant's Motivation --   |t Identifying Grants and Rebates --   |t The Leed Green Building Rating System --   |t Case Study Examples --   |t Renovating Previously Occupied Laboratory Space --   |t Conclusion --   |t Key Concepts --   |g ch. 10   |t Conclusion. 
650 0 |a Laboratories  |x Design and construction.  |0 sh 85073740  
650 0 |a Laboratories  |x Environmental aspects.  |0 sh 85073739  
650 0 |a Sustainable architecture.  |0 sh 00004838  
951 |a 1105914 
999 f f |i eba2c379-4786-5a74-a653-94d9cdb39dae  |s bae8a0a5-b661-5966-9565-0642855b1dee  |t 0 
952 f f |p Can circulate  |a Wentworth Institute of Technology  |b Main Campus  |c Wentworth Library  |d Stacks  |t 0  |e 727.5 .K55 2010  |h Dewey Decimal classification  |i Book  |m 0113801740078