|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
in00000393713 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
220723t20222022ne a ob 001 0 eng d |
005 |
20240808163546.5 |
020 |
|
|
|a 0128243953
|q (electronic book)
|
020 |
|
|
|a 9780128243954
|q (electronic bk.)
|
020 |
|
|
|z 0128243740
|
020 |
|
|
|z 9780128243749
|
035 |
|
|
|a (OCoLC)1336954637
|
035 |
|
|
|a (OCoLC)on1336954637
|
040 |
|
|
|a YDX
|b eng
|e rda
|c YDX
|d SFB
|d YDX
|d OCLCQ
|d OCLCF
|d UKAHL
|d OCLCQ
|d VRC
|d OPELS
|d N$T
|d OCLCO
|d OCLCL
|
049 |
|
|
|a WENN
|
050 |
|
4 |
|a TS183.25
|b .Y84 2022eb
|
082 |
0 |
4 |
|a 621.988
|2 23/eng/20220908
|
100 |
1 |
|
|a Yu, Hang Z.,
|e author.
|
245 |
1 |
0 |
|a Additive friction stir deposition /
|c Hang Z. Yu.
|
264 |
|
1 |
|a Amsterdam, Netherlands ;
|a Cambridge, MA :
|b Elsevier,
|c [2022]
|
264 |
|
4 |
|c ?2022
|
300 |
|
|
|a 1 online resource (xvi, 333 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Additive manufacturing materials and technologies
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Front Cover -- Additive Friction Stir Deposition -- Copyright Page -- Contents -- Preface -- Book endorsement: Additive Friction Stir Deposition -- 1 Introduction -- 1.1 Additive manufacturing for metals -- 1.2 Solid-state metal additive manufacturing -- 1.3 Additive friction stir deposition -- 1.4 Organization of this book -- References -- 2 Process fundamentals -- 2.1 Elements of friction theory -- 2.2 Fundamentals of heat and mass transfer -- 2.2.1 Heat transfer -- 2.2.2 Mass transfer -- 2.3 Basic principle of additive friction stir deposition -- 2.4 Establishment of an integrated in situ monitoring system: real-time measurement of temperature, force, torque, and mate ... -- 2.5 Temperature evolution in the deposited material and substrate -- 2.5.1 Thermal history of the deposited materials -- 2.5.2 Dependence of thermal features on the processing conditions in additive friction stir deposition -- 2.5.3 Power law relationships of peak temperature and processing parameters -- 2.5.4 Temperature evolution of the substrate -- 2.6 Force and torque evolution -- 2.6.1 Multiple phases of force and torque evolution -- 2.6.2 Dependence of steady-state force and torque on processing conditions -- 2.7 In situ visualization of material rotation and flow -- 2.7.1 Footprint and material rotation -- 2.7.2 Contact state and sticking coefficient -- 2.8 Correlation of the material flow behavior to temperature, force, and torque evolution -- 2.8.1 Influences of the contact state and material flow on heat generation -- 2.8.2 Influences of the contact state and material flow on force and torque -- 2.8.3 Factors governing the contact state and material flow behavior -- 2.9 Summary -- References -- 3 Material flow phenomena -- 3.1 Plasticity and finite deformation theory -- 3.2 Elements of fluid mechanics.
|
505 |
8 |
|
|a 3.3 Previous experimental studies on material flow in friction stir welding -- 3.4 Design of tracer experiments for material flow investigation in additive friction stir deposition -- 3.5 Flow path of the center volume of the feed material -- 3.5.1 Center tracer flow during initial material feeding -- 3.5.2 Center tracer flow during steady-state deposition -- 3.6 Flow path of the edge volume of the feed material -- 3.6.1 Edge tracer flow during initial material feeding -- 3.6.2 Edge tracer flow during steady-state deposition -- 3.7 Material deformation and flow at the interface -- 3.7.1 Surface and interface morphology -- 3.7.2 Interfacial mixing -- 3.8 Summary -- References -- 4 Dynamic microstructure evolution -- 4.1 Elements of microstructure evolution -- 4.2 Dynamic recrystallization mechanisms -- 4.2.1 Discontinuous dynamic recrystallization -- 4.2.2 Continuous dynamic recrystallization -- 4.3 Thermomechanical history in additive friction stir deposition -- 4.3.1 Stage A -- 4.3.2 Stage B -- 4.3.3 Stage C -- 4.4 Characteristics of the resulting microstructures by additive friction stir deposition -- 4.4.1 High stacking fault energy materials: Al and Mg -- 4.4.2 Low (to medium) stacking fault energy materials: Inconel 625 and 316L stainless steel -- 4.5 Dynamic microstructure evolution along the flow path of an Al-Cu alloy -- 4.5.1 Microstructure characterization along the flow path of the center tracer -- 4.5.2 Microstructure characterization along the flow path of the edge tracer -- 4.5.3 Quantification of the overall trend -- 4.6 Processing-microstructure linkages of Al-Mg-Si and Cu -- 4.6.1 Microstructure characterization of Al-Mg-Si printed at various conditions -- 4.6.2 Microstructure characterization of Cu printed at various conditions -- 4.6.3 Analysis of the microstructure evolution mechanisms and trends.
|
505 |
8 |
|
|a 4.6.3.1 Origin of the different microstructure evolution mechanisms -- 4.6.3.2 Origin of the process-microstructure linkage in Al-Mg-Si -- 4.6.3.3 Origin of the process-microstructure linkage in Cu -- 4.6.3.4 Origin of the texture differences -- 4.7 Dynamic phase evolution -- 4.8 Summary -- References -- 5 Effects of tool geometry -- 5.1 A survey of tool effects in friction stir welding -- 5.2 Tool types and geometries for additive friction stir deposition -- 5.3 Effects of tool geometry on interface morphology -- 5.4 Effects of tool geometry on microstructure -- 5.5 Summary -- References -- 6 Beyond metals and alloys: additive friction stir deposition of metal matrix composites -- 6.1 Introduction to metal matrix composites -- 6.2 Current processing approaches to metal matrix composites -- 6.2.1 Bulk processing -- 6.2.1.1 Liquid-state processing: stir casting -- 6.2.1.2 Liquid-state processing: squeeze casting -- 6.2.1.3 Solid-state processing: powder metallurgy -- 6.2.2 Additive production -- 6.2.2.1 Powder bed fusion -- 6.2.2.2 Directed energy deposition -- 6.2.2.3 Sheet lamination -- 6.3 Additive friction stir deposition of metal matrix composites -- 6.3.1 Feeding strategy and printing principle -- 6.3.2 Potential benefits -- 6.4 Examples -- 6.4.1 Cu-ZrO2 printed using a composite feed-rod -- 6.4.2 Al-ZrO2, Al-SiC, and Cu-SiC composites printed by packing particles in the hollow feed-rod -- 6.4.3 Al-SiC printed by auger feeding -- 6.5 Limitations of this printing approach -- 6.5.1 Maximum volume fraction of reinforcement -- 6.5.2 Tool wear -- 6.6 Summary -- References -- 7 Mechanical properties of the printed materials -- 7.1 Elements of the mechanical behavior of materials -- 7.2 Tensile properties of the printed metals and alloys -- 7.2.1 Effects of precipitation strengthening -- 7.2.2 Effects of postprocess aging.
|
505 |
8 |
|
|a 7.2.3 Effects of dislocation content -- 7.2.4 Effects of grain size -- 7.2.5 Two-phase alloys -- 7.2.6 Gradient of the mechanical properties -- 7.3 Fracture behavior -- 7.4 Fatigue behavior -- 7.5 Mechanical properties of bilayer structures -- 7.6 Mechanical properties of printed metal matrix composites -- 7.7 Summary -- References -- 8 Niche applications -- 8.1 Structural repair -- 8.1.1 Through-hole filling -- 8.1.2 Groove filling -- 8.1.3 Surface and divot repair -- 8.1.4 Fastener hole repair -- 8.2 Selective-area cladding on thin automotive sheet metals -- 8.2.1 Cladding quality -- 8.2.2 Thin substrate distortion -- 8.3 Recycling -- 8.3.1 Solid-state metal recycling background -- 8.3.2 Friction stirring for solid-state recycling -- 8.4 Large-scale additive manufacturing -- 8.5 Printing and repair under harsh conditions -- 8.6 Summary -- References -- 9 Future perspectives -- 9.1 In-depth understanding of the underlying physics -- 9.2 Material innovation -- 9.3 Incorporation of artificial intelligence -- 9.4 Summary -- References -- Index -- Back Cover.
|
650 |
|
0 |
|a Additive manufacturing.
|
710 |
2 |
|
|a Knovel (Firm)
|
758 |
|
|
|i has work:
|a ADDITIVE FRICTION STIR DEPOSITION (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCYBtGQ3DMJ46H7cxctvq43
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|z 0128243740
|z 9780128243749
|w (OCoLC)1286792562
|
830 |
|
0 |
|a Additive manufacturing materials and technologies
|
852 |
|
|
|b Ebooks
|h Knovel
|
856 |
4 |
0 |
|u https://ezproxywit.flo.org/login?url=https://app.knovel.com/hotlink/toc/id:kpAFSD0003/additive-friction-stir?kpromoter=marc
|z Full text (Wentworth users only)
|t 0
|
947 |
|
|
|a FLO
|x Knovel
|
999 |
f |
f |
|s 0a50435b-8858-48b6-ada1-c55de3934f5a
|i 10c7f618-2a60-4ebe-b420-1a89d98e2d9d
|t 0
|
952 |
f |
f |
|a Wentworth Institute of Technology
|b Main Campus
|c Wentworth Library
|d Ebooks
|t 0
|e Knovel
|h Other scheme
|
856 |
4 |
0 |
|t 0
|u https://ezproxywit.flo.org/login?url=https://app.knovel.com/hotlink/toc/id:kpAFSD0003/additive-friction-stir?kpromoter=marc
|y Full text (Wentworth users only)
|