Bayesian reliability /

Bayesian Reliability presents modern methods and techniques for analyzing reliability data from a Bayesian perspective. The adoption and application of Bayesian methods in virtually all branches of science and engineering have significantly increased over the past few decades. This increase is large...

Full description

Saved in:
Bibliographic Details
Other Authors: Hamada, Michael, 1955-
Format: Electronic eBook
Language:English
Published: New York, NY : Springer, ©2008.
Series:Springer series in statistics.
Subjects:
Online Access: Full text (Wentworth users only)
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000 a 4500
001 in00000309633
006 m o d
007 cr cn|||||||||
008 081217s2008 nyua ob 001 0 eng d
005 20240806152421.8
010 |a  2008930561 
015 |a GBA856504  |2 bnb 
016 7 |a 014589351  |2 Uk 
019 |a 262425484  |a 315355040  |a 316866334  |a 488909030  |a 495281809  |a 646042757  |a 698465281  |a 767210487  |a 880103544  |a 961488060  |a 962658319  |a 965969688  |a 992104978  |a 994808884  |a 1005763120  |a 1007557375  |a 1035697922  |a 1037705769  |a 1038660474  |a 1044301281  |a 1045483355  |a 1055312602  |a 1056408322  |a 1060666662  |a 1060833482  |a 1060978168  |a 1066613992  |a 1069543543  |a 1074342876  |a 1078845268  |a 1081272539  |a 1086885415  |a 1102293931  |a 1110736685  |a 1110773076  |a 1112580497  |a 1153502881  |a 1162626538  |a 1204018578  |a 1391802671 
020 |a 9780387779508 
020 |a 0387779507 
020 |a 9780387779485 
020 |a 0387779485 
024 7 |a 10.1007/978-0-387-77950-8  |2 doi 
035 |a (OCoLC)288468936  |z (OCoLC)262425484  |z (OCoLC)315355040  |z (OCoLC)316866334  |z (OCoLC)488909030  |z (OCoLC)495281809  |z (OCoLC)646042757  |z (OCoLC)698465281  |z (OCoLC)767210487  |z (OCoLC)880103544  |z (OCoLC)961488060  |z (OCoLC)962658319  |z (OCoLC)965969688  |z (OCoLC)992104978  |z (OCoLC)994808884  |z (OCoLC)1005763120  |z (OCoLC)1007557375  |z (OCoLC)1035697922  |z (OCoLC)1037705769  |z (OCoLC)1038660474  |z (OCoLC)1044301281  |z (OCoLC)1045483355  |z (OCoLC)1055312602  |z (OCoLC)1056408322  |z (OCoLC)1060666662  |z (OCoLC)1060833482  |z (OCoLC)1060978168  |z (OCoLC)1066613992  |z (OCoLC)1069543543  |z (OCoLC)1074342876  |z (OCoLC)1078845268  |z (OCoLC)1081272539  |z (OCoLC)1086885415  |z (OCoLC)1102293931  |z (OCoLC)1110736685  |z (OCoLC)1110773076  |z (OCoLC)1112580497  |z (OCoLC)1153502881  |z (OCoLC)1162626538  |z (OCoLC)1204018578  |z (OCoLC)1391802671 
035 |a (OCoLC)ocn288468936 
037 |a 978-0-387-77948-5  |b Springer  |n http://www.springerlink.com 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d MNU  |d OSU  |d N$T  |d NUI  |d OCLCQ  |d YDXCP  |d UAB  |d E7B  |d IDEBK  |d EBLCP  |d OCLCQ  |d A7U  |d OCLCQ  |d OCLCF  |d DEBSZ  |d DKDLA  |d OCLCQ  |d SLY  |d COO  |d OCLCQ  |d NLGGC  |d AZK  |d LOA  |d COCUF  |d Z5A  |d LIP  |d PIFAG  |d ZCU  |d OTZ  |d OCLCQ  |d MERUC  |d ESU  |d OCLCQ  |d VT2  |d U3W  |d CUY  |d STF  |d WRM  |d OCLCQ  |d CEF  |d NRAMU  |d INT  |d OCLCQ  |d WYU  |d ICG  |d YOU  |d CANPU  |d OCLCQ  |d DKC  |d OCLCQ  |d CNTRU  |d W2U  |d AUD  |d OCLCQ  |d ZHM  |d DCT  |d ERF  |d OCLCQ  |d UKCRE  |d OCLCO  |d OCLCQ  |d DKU  |d OCLCO  |d S9M  |d OCLCL  |d S9M 
050 4 |a TA169  |b .H36 2008eb 
072 7 |a TEC  |x 032000  |2 bisacsh 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
082 0 4 |a 620.0045201519542  |2 22 
084 |a 31.70  |2 bcl 
084 |a O212. 8  |2 clc 
245 0 0 |a Bayesian reliability /  |c Michael S. Hamada [and others]. 
260 |a New York, NY :  |b Springer,  |c ©2008. 
300 |a 1 online resource (xvi, 436 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Springer series in statistics 
504 |a Includes bibliographical references (pages 413-425)-and indexes. 
505 0 |a Reliability concepts -- Bayesian inference -- Advanced Bayesian modeling and computational methods -- Component reliability -- System reliability -- Repairable system reliability -- Regression models in reliability -- Using degradation data to assess reliability -- Planning for reliability data collection -- Assurance testing. 
506 |a University staff and students only. Requires University Computer Account login off-campus. 
520 8 |a Bayesian Reliability presents modern methods and techniques for analyzing reliability data from a Bayesian perspective. The adoption and application of Bayesian methods in virtually all branches of science and engineering have significantly increased over the past few decades. This increase is largely due to advances in simulation-based computational tools for implementing Bayesian methods. The authors extensively use such tools throughout this book, focusing on assessing the reliability of components and systems with particular attention to hierarchical models and models incorporating explanatory variables. Such models include failure time regression models, accelerated testing models, and degradation models. The authors pay special attention to Bayesian goodness-of-fit testing, model validation, reliability test design, and assurance test planning. Throughout the book, the authors use Markov chain Monte Carlo (MCMC) algorithms for implementing Bayesian analyses--algorithms that make the Bayesian approach to reliability computationally feasible and conceptually straightforward. This book is primarily a reference collection of modern Bayesian methods in reliability for use by reliability practitioners. There are more than 70 illustrative examples, most of which utilize real-world data. This book can also be used as a textbook for a course in reliability and contains more than 160 exercises. Noteworthy highlights of the book include Bayesian approaches for the following: Goodness-of-fit and model selection methods Hierarchical models for reliability estimation Fault tree analysis methodology that supports data acquisition at all levels in the tree Bayesian networks in reliability analysis Analysis of failure count and failure time data collected from repairable systems, and the assessment of various related performance criteria Analysis of nondestructive and destructive degradation data Optimal design of reliability experiments Hierarchical reliability assurance testing Dr. Michael S. Hamada is a Technical Staff Member in the Statistical Sciences Group at Los Alamos National Laboratory and is a Fellow of the American Statistical Association. Dr. Alyson G. Wilson is a Technical Staff Member in the Statistical Sciences Group at Los Alamos National Laboratory. Dr. C. Shane Reese is an Associate Professor in the Department of Statistics at Brigham Young University. Dr. Harry F. Martz is retired from the Statistical Sciences Group at Los Alamos National Laboratory and is a Fellow of the American Statistical Association. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Bayesian statistical decision theory. 
650 0 |a Reliability (Engineering)  |x Statistical methods. 
650 0 |a Distribution (Probability theory) 
650 7 |a distribution (statistics-related concept)  |2 aat 
700 1 |a Hamada, Michael,  |d 1955-  |1 https://id.oclc.org/worldcat/entity/E39PCjvrgpGV6xhqT4fGkFVhRC 
758 |i has work:  |a Bayesian reliability (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGrccdVRwwYvHDQTRHPwvd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
773 0 |t Springer eBooks 
776 0 8 |i Print version:  |t Bayesian reliability.  |d New York, NY : Springer, ©2008  |z 9780387779485  |z 0387779485  |w (DLC) 2008930561  |w (OCoLC)225427570 
830 0 |a Springer series in statistics. 
852 |b Ebooks  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/wit/detail.action?docID=364398  |z Full text (Wentworth users only)  |t 0 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 186123 
947 |a FLO  |x pq-ebc-base 
999 f f |s beab528b-1455-4c1b-8ccc-dbf696063d64  |i 3f85ac35-0dd2-4882-a1bc-45da78a04304  |t 0 
952 f f |a Wentworth Institute of Technology  |b Main Campus  |c Wentworth Library  |d Ebooks  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/wit/detail.action?docID=364398  |y Full text (Wentworth users only)