Szegő kernel asymptotics for high power of CR line bundles and Kodaira embedding theorems on CR manifolds /

Saved in:
Bibliographic Details
Main Author: Hsiao, Chin-Yu (Author)
Format: Electronic eBook
Language:English
Published: Providence, Rhode Island : American Mathematical Society, [2018]
Series:Memoirs of the American Mathematical Society ; no. 1217.
Subjects:
Online Access: Full text (Wentworth users only)
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000 i 4500
001 in00000302747
006 m o d
007 cr |n|||||||||
008 180607t20182018riu ob 000 0 eng d
005 20240805163947.9
019 |a 1066118121  |a 1241868731  |a 1290099892 
020 |a 9781470447502  |q (online) 
020 |a 1470447509  |q (online) 
020 |z 9781470441012  |q (print) 
020 |z 1470441012  |q (print) 
029 1 |a AU@  |b 000069397014 
035 |a (OCoLC)1039082787  |z (OCoLC)1066118121  |z (OCoLC)1241868731  |z (OCoLC)1290099892 
035 |a (OCoLC)on1039082787 
040 |a GZM  |b eng  |e rda  |e pn  |c GZM  |d UIU  |d COD  |d OCLCF  |d YDX  |d EBLCP  |d CUY  |d COO  |d AU@  |d OCLCQ  |d OCLCA  |d OCLCQ  |d CDN  |d UKAHL  |d OCL  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL  |d SXB 
050 4 |a QA323  |b .H75 2018 
082 0 4 |a 516.3/6  |2 23 
100 1 |a Hsiao, Chin-Yu,  |e author. 
245 1 0 |a Szegő kernel asymptotics for high power of CR line bundles and Kodaira embedding theorems on CR manifolds /  |c Chin-Yu Hsiao. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource (v, 142 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v number 1217 
500 |a "July 2018, volume 254, number 1217 (fifth of 5 numbers)." 
504 |a Includes bibliographical references (pages 141-142). 
505 0 |a 1. Introduction and statement of the main results -- 2. More properties of the phase [capital letter Pi](x, y, s) -- 3. Preliminaries -- 4. Semi-classical [box](q)b, k and the characteristic manifold for [box](q)b, k -- 5. The heat equation for the local operatot [box](q)s -- 6. Semi-classical Hodge decomposition theorems for [box](q)s, k in some non-degenerate part of E -- 7. Szegő kernel asymptotic for lower energy forms -- 8. Almost Kodaira embedding Theorems on CR manifolds -- 9. Asymptotic expension of the Szegő kernel -- 10. Szegő kernel asymptotics and Kodairan embedding theorems on CR manifolds with transversal CR, S1 actions -- 11. Szegő kernel asymptotics on some non-compact CR manifolds -- 12. The proof of Theorem 5.28. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Embedding theorems. 
650 0 |a CR submanifolds. 
650 0 |a Manifolds (Mathematics) 
650 0 |a Embeddings (Mathematics) 
650 0 |a Kernel functions. 
650 0 |a Asymptotic expansions. 
650 0 |a Functions of several complex variables. 
650 0 |a Integral geometry. 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Szegö kernel asymptotics for high power of CR line bundles and Kodaira embedding theorems on CR manifolds (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFy947gj7WTBYGrQdtdDWP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a HSIAO, CHIN-YU.  |t SZEGO KERNEL ASYMPTOTICS FOR HIGH POWER OF CR LINE BUNDLES AND KODAIRA EMBEDDING THEOREMS ON CR ... MANIFOLDS.  |d [S.l.] : AMER MATHEMATICAL SOCIETY, 2018  |z 9781470441012  |z 1470441012  |w (OCoLC)1031944776 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1217. 
852 |b Ebooks  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/wit/detail.action?docID=5501873  |z Full text (Wentworth users only)  |t 0 
947 |a FLO  |x pq-ebc-base 
999 f f |s c663fa3b-4c19-4eed-a5e1-21d9642db4d7  |i 21c80b5c-d7a4-4f8a-8adb-f1e3d9f20de3  |t 0 
952 f f |a Wentworth Institute of Technology  |b Main Campus  |c Wentworth Library  |d Ebooks  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/wit/detail.action?docID=5501873  |y Full text (Wentworth users only)