Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on Mathbb{R}

The author considers semilinear parabolic equations of the form u_t=u_xx+f(u), quad x in mathbb R,t>0, where f a C^1 function. Assuming that 0 and gamma >0 are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions u whose init...

Full description

Saved in:
Bibliographic Details
Main Author: Poláčik, Peter
Format: Electronic eBook
Language:English
Published: Providence : American Mathematical Society, 2020.
Series:Memoirs of the American Mathematical Society ; no. 1278.
Subjects:
Online Access: Full text (Wentworth users only)
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000uu 4500
001 in00000301992
006 m o d
007 cr |n|||||||||
008 200516s2020 riu o ||| 0 eng d
005 20240806195951.1
019 |a 1153270499  |a 1154568290  |a 1154824377  |a 1179921543 
020 |a 9781470458065 
020 |a 1470458063 
020 |z 1470441128 
020 |z 9781470441128 
035 |a (OCoLC)1154528262  |z (OCoLC)1153270499  |z (OCoLC)1154568290  |z (OCoLC)1154824377  |z (OCoLC)1179921543 
035 |a (OCoLC)on1154528262 
040 |a EBLCP  |b eng  |c EBLCP  |d YDX  |d EBLCP  |d CDN  |d N$T  |d OCLCF  |d OCLCO  |d MERUC  |d LOA  |d K6U  |d S2H  |d OCLCO  |d OCLCQ  |d UIU  |d OCLCO  |d S9M  |d OCLCL 
050 4 |a QA377  |b .P567 2020 
066 |c (S 
082 0 4 |a 515/.3534  |2 23 
084 |a 35K15  |a 35B40  |a 35B35  |a 35B05  |2 msc 
100 1 |a Poláčik, Peter. 
245 1 0 |a Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on Mathbb{R}  |h [electronic resource]. 
260 |a Providence :  |b American Mathematical Society,  |c 2020. 
300 |a 1 online resource (100 p.). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society Ser. ;  |v v.264 
504 |a Includes bibliographical references. 
505 0 |a Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Main results -- 2.1. Minimal systems of waves and propagating terraces -- 2.2. The case where 0 and are both stable -- 2.3. The case where one of the steady states 0, is unstable -- 2.4. The om-limit set and quasiconvergence -- 2.5. Locally uniform convergence to a specific front and exponential convergence -- Chapter 3. Phase plane analysis -- 3.1. Basic properties of the trajectories -- 3.2. A more detailed description of the minimal system of waves -- 3.3. Some trajectories out of the minimal system of waves 
505 8 |a 6.7. Completion of the proofs of Theorems 2.7, 2.9, 2.17 -- 6.8. Completion of the proofs of Theorems 2.11 and 2.19 -- 6.9. Proof of Theorem 2.22 -- Bibliography -- Back Cover 
520 |a The author considers semilinear parabolic equations of the form u_t=u_xx+f(u), quad x in mathbb R,t>0, where f a C^1 function. Assuming that 0 and gamma >0 are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x,0) are near gamma for x approx - infty and near 0 for x approx infty . If the steady states 0 and gamma are both stable, the main theorem shows that at large times, the graph of u( cdot ,t) is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). The author. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Reaction-diffusion equations. 
650 0 |a Differential equations, Parabolic. 
650 0 |a Differential equations, Partial. 
758 |i has work:  |a Propagating terraces and the dynamics of front -like solutions of reaction-diffusion equations ... on mathbb r (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3vjkpFDdqtthfdqCMwgrq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Poláčik, Peter  |t Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on Mathbb{R}  |d Providence : American Mathematical Society,c2020  |z 9781470441128 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1278. 
852 |b Ebooks  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/wit/detail.action?docID=6195961  |z Full text (Wentworth users only)  |t 0 
880 8 |6 505-00/(S  |a Chapter 4. Proofs of Propositions 2.8, 2.12 -- Chapter 5. Preliminaries on the limit sets and zero number -- 5.1. Properties of Ω( ) -- 5.2. Zero number -- Chapter 6. Proofs of the main theorems -- 6.1. Some estimates: behavior at =±∞ and propagation -- 6.2. A key lemma: no intersection of spatial trajectories -- 6.3. The spatial trajectories of the functions in Om( ) -- 6.4. Om( ) contains the minimal propagating terrace -- 6.5. Ruling out other points from _{ Om}( ) -- 6.6. Completion of the proofs of Theorems 2.5, 2.13, and 2.15 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6195961 
947 |a FLO  |x pq-ebc-base 
999 f f |s b331dd3a-74e3-4942-a172-7e2b9e87414b  |i 90176132-2500-4409-a5d4-72448894a471  |t 0 
952 f f |a Wentworth Institute of Technology  |b Main Campus  |c Wentworth Library  |d Ebooks  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/wit/detail.action?docID=6195961  |y Full text (Wentworth users only)