Nearest-neighbor methods in learning and vision : theory and practice /

Regression and classification methods based on similarity of the input to stored examples have not been widely used in applications involving very large sets of high-dimensional data. Recent advances in computational geometry and machine learning, however, may alleviate the problems in using these m...

Full description

Saved in:
Bibliographic Details
Other Authors: Shakhnarovich, Gregory, Darrell, Trevor, Indyk, Piotr
Format: Electronic eBook
Language:English
Published: Cambridge, Mass. : MIT Press, ©2005.
Series:Neural information processing series.
Subjects:
Online Access: Full text (Wentworth users only)
Local Note:ProQuest Ebook Central
Description
Summary:Regression and classification methods based on similarity of the input to stored examples have not been widely used in applications involving very large sets of high-dimensional data. Recent advances in computational geometry and machine learning, however, may alleviate the problems in using these methods on large data sets. This volume presents theoretical and practical discussions of nearest-neighbor (NN) methods in machine learning and examines computer vision as an application domain in which the benefit of these advanced methods is often dramatic. It brings together contributions from researchers in theory of computation, machine learning, and computer vision with the goals of bridging the gaps between disciplines and presenting state-of-the-art methods for emerging applications. The contributors focus on the importance of designing algorithms for NN search, and for the related classification, regression, and retrieval tasks, that remain efficient even as the number of points or the dimensionality of the data grows very large. The book begins with two theoretical chapters on computational geometry and then explores ways to make the NN approach practicable in machine learning applications where the dimensionality of the data and the size of the data sets make the naive methods for NN search prohibitively expensive. The final chapters describe successful applications of an NN algorithm, locality-sensitive hashing (LSH), to vision tasks.
Item Description:" ... held in Whistler, British Columbia ... annual conference on Neural Information Processing Systems (NIPS) in December 2003"--Preface
Physical Description:1 online resource (vi, 252 pages) : illustrations
Bibliography:Includes bibliographical references and index.
ISBN:9780262256957
0262256959
1282096753
9781282096752
9786612096754
6612096756
1423772539
9781423772538
Language:English.
Source of Description, Etc. Note:Print version record.