A Structural Account of Mathematics.

Charles Chihara presents a structural view of the nature of mathematics, and uses it to explain a number of striking features of mathematics that have puzzled philosophers for centuries. In particular, this perspective allows Chihara to show that, in order to understand how mathematical systems are...

Full description

Saved in:
Bibliographic Details
Main Author: Chihara, Charles S.
Format: Electronic eBook
Language:English
Published: Oxford : Oxford University Press, UK, 2007.
Subjects:
Online Access: Full text (Wentworth users only)
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000uu 4500
001 in00000143963
006 m o d
007 cr mn|---|||||
008 091207s2007 enk o 000 0 eng d
005 20240806205735.7
019 |a 842971654 
020 |a 9780191533105  |q (electronic bk.) 
020 |a 0191533106  |q (electronic bk.) 
035 |a (OCoLC)476260094  |z (OCoLC)842971654 
035 |a (OCoLC)ocn476260094 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d MHW  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d OCLCO  |d OCLCF  |d OCLCQ  |d WYU  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
050 4 |a QA8.4 .C47 2004 
082 0 4 |a 511 
100 1 |a Chihara, Charles S. 
245 1 2 |a A Structural Account of Mathematics. 
260 |a Oxford :  |b Oxford University Press, UK,  |c 2007. 
300 |a 1 online resource (395 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Preface; Contents; Introduction; 1. Five Puzzles in Search of an Explanation; 2. Geometry and Mathematical Existence; 3. The van Inwagen Puzzle; 4. Structuralism; 5. Platonism; 6. Minimal Anti-Nominalism; 7. The Constructibility Theory; 8. Constructible Structures; 9. Applications; 10. If-Thenism; 11. Field's Account of Mathematics and Metalogic; Appendix A. Some Doubts About Hellman's Views; Appendix B. Balaguer's Fictionalism; Bibliography; Index. 
520 |a Charles Chihara presents a structural view of the nature of mathematics, and uses it to explain a number of striking features of mathematics that have puzzled philosophers for centuries. In particular, this perspective allows Chihara to show that, in order to understand how mathematical systems are applied in science, it is not necessary to assume that its theorems either presuppose mathematical objects or are even true. He also advances several new ways of undermining the Platonic. view of mathematics. Anyone working in the field will find much to reward and stimulate them here. - ;Charles Ch. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematics  |x Philosophy. 
650 0 |a Structuralism. 
650 0 |a Constructive mathematics. 
650 7 |a structuralism.  |2 aat 
650 7 |a structures (structural elements)  |2 aat 
650 7 |a structures (single built works)  |2 aat 
758 |i has work:  |a A structural account of mathematics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGCdRddHTJrvtbjBF3Krv3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 1 |z 9780199228072 
852 |b Ebooks  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/wit/detail.action?docID=422866  |z Full text (Wentworth users only)  |t 0 
947 |a FLO  |x pq-ebc-base 
999 f f |s 2e026de6-5257-49d1-b546-5d662e131b47  |i a9618490-8a45-4762-9447-a3b3d1b25145  |t 0 
952 f f |a Wentworth Institute of Technology  |b Main Campus  |c Wentworth Library  |d Ebooks  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/wit/detail.action?docID=422866  |y Full text (Wentworth users only)