Non-archimedean tame topology and stably dominated types /

Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity stat...

Full description

Saved in:
Bibliographic Details
Main Authors: Hrushovski, Ehud, 1959- (Author), Loeser, François (Author)
Format: Electronic eBook
Language:English
Published: Princeton : Princeton University Press, 2016.
Series:Annals of mathematics studies ; no. 192.
Subjects:
Online Access: Full text (Wentworth users only)
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000 i 4500
001 in00000129623
006 m o d
007 cr cnu|||unuuu
008 151223s2016 nju ob 001 0 eng d
005 20240807150015.4
019 |a 957614707  |a 979911327  |a 992820386  |a 1055393170  |a 1066453457 
020 |a 9781400881222  |q (electronic bk.) 
020 |a 1400881226  |q (electronic bk.) 
020 |a 0691161682 
020 |a 9780691161686 
020 |a 0691161690 
020 |a 9780691161693 
024 7 |a 10.1515/9781400881222  |2 doi 
035 |a (OCoLC)933388580  |z (OCoLC)957614707  |z (OCoLC)979911327  |z (OCoLC)992820386  |z (OCoLC)1055393170  |z (OCoLC)1066453457 
035 |a (OCoLC)ocn933388580 
037 |a 22573/ctt193cj76  |b JSTOR 
037 |a 9452405  |b IEEE 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d YDXCP  |d N$T  |d EBLCP  |d JSTOR  |d OCLCF  |d CDX  |d DEBBG  |d COO  |d CCO  |d COCUF  |d LOA  |d MERUC  |d AGLDB  |d ICA  |d PIFAG  |d FVL  |d YDX  |d BAB  |d ZCU  |d OCLCQ  |d CUY  |d OCLCQ  |d U3G  |d NJR  |d DEGRU  |d B3G  |d I9W  |d I8H  |d IL4I4  |d U3W  |d OCLCQ  |d D6H  |d EZ9  |d OCLCQ  |d WRM  |d STF  |d OCLCQ  |d VTS  |d ICG  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d LEAUB  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d SFB  |d OCLCQ  |d AUD  |d MM9  |d IEEEE  |d CN6UV  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
050 4 |a QA251.5  |b .H78 2016eb 
066 |c (S 
072 7 |a MAT  |x 002040  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a MAT012020  |2 bisacsh 
082 0 4 |a 512./4  |2 23 
084 |a SI 830  |2 rvk 
100 1 |a Hrushovski, Ehud,  |d 1959-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJvCPykRCfpXQfXVH9rQbd 
245 1 0 |a Non-archimedean tame topology and stably dominated types /  |c Ehud Hrushovski, François Loeser. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2016. 
264 4 |c ©2016 
300 |a 1 online resource (vii, 216 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Annals of mathematics studies ;  |v number 192 
504 |a Includes bibliographical references (pages 207-210) and index. 
505 0 0 |6 880-01  |t Frontmatter --  |t Contents --  |t 1. Introduction --  |t 2. Preliminaries --  |t 3. The space v̂ of stably dominated types --  |t 4. Definable compactness --  |t 5. A closer look at the stable completion --  |t 6. [Gamma]-internal spaces --  |t 7. Curves --  |t 8. Strongly stably dominated points --  |t 9. Specializations and ACV2F --  |t 10. Continuity of homotopies --  |t 11. The main theorem --  |t 12. The smooth case --  |t 13. An equivalence of categories --  |t 14. Applications to the topology of Berkovich spaces --  |t Bibliography --  |t Index --  |t List of notations. 
520 |a Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry. This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness. Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods. No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections. 
546 |a In English. 
588 0 |a Vendor-supplied metadata. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Tame algebras. 
700 1 |a Loeser, François,  |e author. 
758 |i has work:  |a Non-archimedean tame topology and stably dominated types (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG46VxBcmmdtx3qwCfjBKb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9780691161686 
830 0 |a Annals of mathematics studies ;  |v no. 192. 
852 |b Ebooks  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/wit/detail.action?docID=4198288  |z Full text (Wentworth users only)  |t 0 
880 0 0 |6 505-01/(S  |t Frontmatter --  |t Contents --  |t 1. Introduction --  |t 2. Preliminaries --  |t 3. The space v̂ of stably dominated types --  |t 4. Definable compactness --  |t 5. A closer look at the stable completion --  |t 6. Γ-internal spaces --  |t 7. Curves --  |t 8. Strongly stably dominated points --  |t 9. Specializations and ACV2F --  |t 10. Continuity of homotopies --  |t 11. The main theorem --  |t 12. The smooth case --  |t 13. An equivalence of categories --  |t 14. Applications to the topology of Berkovich spaces --  |t Bibliography --  |t Index --  |t List of notations. 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis33383068 
947 |a FLO  |x pq-ebc-base 
999 f f |s 46bf9edf-38f1-4989-af01-e90f40ecbd5d  |i e114fe1c-54ad-4e0d-90df-0e76f029fe59  |t 0 
952 f f |a Wentworth Institute of Technology  |b Main Campus  |c Wentworth Library  |d Ebooks  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/wit/detail.action?docID=4198288  |y Full text (Wentworth users only)