An introduction to LTE LTE, LTE-advanced, SAE, VoLTE and 4G mobile communications /
Following on from the successful first edition (March 2012), this book gives a clear explanation of what LTE does and how it works. The content is expressed at a systems level, offering readers the opportunity to grasp the key factors that make LTE the hot topic amongst vendors and operators across...
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Chichester, West Sussex, United Kingdon ; Hoboken, New Jersey :
John Wiley & Sons, Inc.,
[2014]
|
Subjects: | |
Online Access: |
Full text (Wentworth users only) |
Local Note: | ProQuest Ebook Central |
Table of Contents:
- 1.1. Architectural Review of UMTS and GSM
- 1.1.1. High-Level Architecture
- 1.1.2. Architecture of the Radio Access Network
- 1.1.3. Architecture of the Core Network
- 1.1.4.Communication Protocols
- 1.2. History of Mobile Telecommunication Systems
- 1.2.1. From 1G to 3G
- 1.2.2. Third Generation Systems
- 1.3. The Need for LTE
- 1.3.1. The Growth of Mobile Data
- 1.3.2. Capacity of a Mobile Telecommunication System
- 1.3.3. Increasing the System Capacity
- 1.3.4. Additional Motivations
- 1.4. From UMTS to LTE
- 1.4.1. High-Level Architecture of LTE
- 1.4.2. Long-Term Evolution
- 1.4.3. System Architecture Evolution
- 1.4.4. LTE Voice Calls
- 1.4.5. The Growth bf LTE
- 1.5. From LTE to LTE-Advanced
- 1.5.1. The ITU Requirements for 4G
- 1.5.2. Requirements of LTE-Advanced
- 1.5.3.4G Communication Systems
- 1.5.4. The Meaning of 4G
- 1.6. The 3GPP Specifications for LTE
- References
- 2.1. High-Level Architecture of LTE
- 2.2. User Equipment.
- 2.2.1. Architecture of the UE
- 2.2.2. UE Capabilities
- 2.3. Evolved UMTS Terrestrial Radio Access Network
- 2.3.1. Architecture of the E-UTRAN
- 2.3.2. Transport Network
- 2.3.3. Small Cells and the Home eNB
- 2.4. Evolved Packet Core
- 2.4.1. Architecture of the EPC
- 2.4.2. Roaming Architecture
- 2.4.3.Network Areas
- 2.4.4. Numbering, Addressing and Identification
- 2.5.Communication Protocols
- 2.5.1. Protocol Model
- 2.5.2. Air Interface Transport Protocols
- 2.5.3. Fixed Network Transport Protocols
- 2.5.4. User Plane Protocols
- 2.5.5. Signalling Protocols
- 2.6. Example Signalling Flows
- 2.6.1. Access Stratum Signalling
- 2.6.2. Non-Access Stratum Signalling
- 2.7. Bearer Management
- 2.7.1. The EPS Bearer
- 2.7.2. Default and Dedicated Bearers
- 2.7.3. Bearer Implementation Using GTP
- 2.7.4. Bearer Implementation Using GRE and PMIP
- 2.7.5. Signalling Radio Bearers
- 2.8. State Diagrams
- 2.8.1. EPS Mobility Management.
- 2.8.2. EPS Connection Management
- 2.8.3. Radio Resource Control
- 2.9. Spectrum Allocation
- References
- 3.1. Radio Transmission and Reception
- 3.1.1. Carrier Signal
- 3.1.2. Modulation Techniques
- 3.1.3. The Modulation Process
- 3.1.4. The Demodulation Process
- 3.1.5. Channel Estimation
- 3.1.6. Bandwidth of the Modulated Signal
- 3.2. Radio Transmission in a Mobile Cellular Network
- 3.2.1. Multiple Access Techniques
- 3.2.2. FDD and TDD Modes
- 3.3. Impairments to the Received Signal
- 3.3.1. Propagation Loss
- 3.3.2. Noise and Interference
- 3.3.3. Multipath and Fading
- 3.3.4. Inter-symbol Interference
- 3.4. Error Management
- 3.4.1. Forward Error Correction
- 3.4.2. Automatic Repeat Request
- 3.4.3. Hybrid ARQ
- References
- 4.1. Principles of OFDMA
- 4.1.1. Sub-carriers
- 4.1.2. The OFDM Transmitter
- 4.1.3. The OFDM Receiver
- 4.1.4. The Fast Fourier Transform
- 4.1.5. Block Diagram of OFDMA
- 4.1.6. Details of the Fourier Transform.
- 4.2. Benefits and Additional Features of OFDMA
- 4.2.1. Orthogonal Sub-carriers
- 4.2.2. Choice of Sub-carrier Spacing
- 4.2.3. Frequency-Specific Scheduling
- 4.2.4. Reduction of Inter-symbol Interference
- 4.2.5. Cyclic Prefix Insertion
- 4.2.6. Choice of Symbol Duration
- 4.2.7. Fractional Frequency Re-use
- 4.3. Single Carrier Frequency Division Multiple Access
- 4.3.1. Power Variations From OFDMA
- 4.3.2. Block Diagram of SC-FDMA
- References
- 5.1. Diversity Processing
- 5.1.1. Receive Diversity
- 5.1.2. Closed Loop Transmit Diversity
- 5.1.3. Open Loop Transmit Diversity
- 5.2. Spatial Multiplexing
- 5.2.1. Principles of Operation
- 5.2.2. Open Loop Spatial Multiplexing
- 5.2.3. Closed Loop Spatial Multiplexing
- 5.2.4. Matrix Representation
- 5.2.5. Implementation Issues
- 5.2.6. Multiple User MIMO
- 5.3. Beamforming
- 5.3.1. Principles of Operation
- 5.3.2. Beam Steering
- 5.3.3. Downlink Multiple User MIMO Revisited
- References.
- 6.1. Air Interface Protocol Stack
- 6.2. Logical, Transport and Physical Channels
- 6.2.1. Logical Channels
- 6.2.2. Transport Channels
- 6.2.3. Physical Data Channels
- 6.2.4. Control Information
- 6.2.5. Physical Control Channels
- 6.2.6. Physical Signals
- 6.2.7. Information Flows
- 6.3. The Resource Grid
- 6.3.1. Slot Structure
- 6.3.2. Frame Structure
- 6.3.3. Uplink Timing Advance
- 6.3.4. Resource Grid Structure
- 6.3.5. Bandwidth Options
- 6.4. Multiple Antenna Transmission
- 6.4.1. Downlink Antenna Ports
- 6.4.2. Downlink Transmission Modes
- 6.5. Resource Element Mapping
- 6.5.1. Downlink Resource Element Mapping
- 6.5.2. Uplink Resource Element Mapping
- References
- 7.1. Acquisition Procedure
- 7.2. Synchronization Signals
- 7.2.1. Physical Cell Identity
- 7.2.2. Primary Synchronization Signal
- 7.2.3. Secondary Synchronization Signal
- 7.3. Downlink Reference Signals
- 7.4. Physical Broadcast Channel.
- 7.5. Physical Control Format Indicator Channel
- 7.6. System Information
- 7.6.1.Organization of the System Information
- 7.6.2. Transmission and Reception of the System Information
- 7.7. Procedures after Acquisition
- References
- 8.1. Data Transmission Procedures
- 8.1.1. Downlink Transmission and Reception
- 8.1.2. Uplink Transmission and Reception
- 8.1.3. Semi Persistent Scheduling
- 8.2. Transmission of Scheduling Messages on the PDCCH
- 8.2.1. Downlink Control Information
- 8.2.2. Resource Allocation
- 8.2.3. Example: DCI Format 1
- 8.2.4. Radio Network Temporary Identifiers
- 8.2.5. Transmission and Reception of the PDCCH
- 8.3. Data Transmission on the PDSCH and PUSCH
- 8.3.1. Transport Channel Processing
- 8.3.2. Physical Channel Processing
- 8.4. Transmission of Hybrid ARQ Indicators on the PHICH
- 8.4.1. Introduction
- 8.4.2. Resource Element Mapping of the PHICH
- 8.4.3. Physical Channel Processing of the PHICH.
- 8.5. Uplink Control Information
- 8.5.1. Hybrid ARQ Acknowledgements
- 8.5.2. Channel Quality Indicator
- 8.5.3. Rank Indication
- 8.5.4. Precoding Matrix Indicator
- 8.5.5. Channel State Reporting Mechanisms
- 8.5.6. Scheduling Requests
- 8.6. Transmission of Uplink Control Information on the PUCCH
- 8.6.1. PUCCH Formats
- 8.6.2. PUCCH Resources
- 8.6.3. Physical Channel Processing of the PUCCH
- 8.7. Uplink Reference Signals
- 8.7.1. Demodulation Reference Signal
- 8.7.2. Sounding Reference Signal
- 8.8. Power Control
- 8.8.1. Uplink Power Calculation
- 8.8.2. Uplink Power Control Commands
- 8.8.3. Downlink Power Control
- 8.9. Discontinuous Reception
- 8.9.1. Discontinuous Reception and Paging in RRC_IDLE
- 8.9.2. Discontinuous Reception in RRC_CONNECTED
- References
- 9.1. Transmission of Random Access Preambles on the PRACH
- 9.1.1. Resource Element Mapping
- 9.1.2. Preamble Sequence Generation
- 9.1.3. Signal Transmission.
- 9.2. Non-Contention-Based Procedure
- 9.3. Contention-Based Procedure
- References
- 10.1. Medium Access Control Protocol
- 10.1.1. Protocol Architecture
- 10.1.2. Timing Advance Commands
- 10.1.3. Buffer Status Reporting
- 10.1.4. Power Headroom Reporting
- 10.1.5. Multiplexing and De-multiplexing
- 10.1.6. Logical Channel Prioritization
- 10.1.7. Scheduling of Transmissions on the Air Interface
- 10.2. Radio Link Control Protocol
- 10.2.1. Protocol Architecture
- 10.2.2. Transparent Mode
- 10.2.3. Unacknowledged Mode
- 10.2.4. Acknowledged Mode
- 10.3. Packet Data Convergence Protocol
- 10.3.1. Protocol Architecture
- 10.3.2. Header Compression
- 10.3.3. Prevention of Packet Loss during Handover
- References
- 11.1. Power-On Sequence
- 11.2.Network and Cell Selection
- 11.2.1.Network Selection
- 11.2.2. Closed Subscriber Group Selection
- 11.2.3. Cell Selection
- 11.3. RRC Connection Establishment
- 11.3.1. Basic Procedure.
- 11.3.2. Relationship with Other Procedures
- 11.4. Attach Procedure
- 11.4.1. IP Address-Allocation
- 11.4.2. Overview of the Attach Procedure
- 11.4.3. Attach Request
- 11.4.4. Identification and Security Procedures
- 11.4.5. Location Update
- 11.4.6. Default Bearer Creation
- 11.4.7. Attach Accept
- 11.4.8. Default Bearer Update
- 11.5. Detach Procedure
- References
- 12.1.Network Access Security
- 12.1.1. Security Architecture
- 12.1.2. Key Hierarchy
- 12.1.3. Authentication and Key Agreement
- 12.1.4. Security Activation
- 12.1.5. Ciphering
- 12.1.6. Integrity Protection
- 12.2.Network Domain Security
- 12.2.1. Security Protocols
- 12.2.2. Security in the Evolved Packet Core
- 12.2.3. Security in the Radio Access Network
- References
- 13.1. Policy and Charging Control
- 13.1.1. Quality of Service Parameters
- 13.1.2. Service Data Flows
- 13.1.3. Charging Parameters
- 13.1.4. Policy and Charging Control Rules.
- 13.2. Policy and Charging Control Architecture
- 13.2.1. Basic PCC Architecture
- 13.2.2. Local Breakout Architecture
- 13.2.3. Architecture Using a PMIP Based S5/S8
- 13.2.4. Software Protocols
- 13.3. Session Management Procedures
- 13.3.1. IP-CAN Session Establishment
- 13.3.2. Mobile Originated SDF Establishment
- 13.3.3. Server Originated SDF Establishment
- 13.3.4. Dedicated Bearer Establishment
- 13.3.5. PDN Connectivity Establishment
- 13.3.6. Other Session Management Procedures
- 13.4. Data Transport in the Evolved Packet Core
- 13.4.1. Packet Handling at the PDN Gateway
- 13.4.2. Data Transport Using GTP
- 13.4.3. Differentiated Services
- 13.4.4. Multiprotocol Label Switching
- 13.4.5. Data Transport Using GRE and PMIP
- 13.5. Charging and Billing
- 13.5.1. High Level Architecture
- 13.5.2. Offline Charging
- 13.5.3. Online Charging
- References
- 14.1. Transitions between Mobility Management States
- 14.1.1.S1 Release Procedure.
- 14.1.2. Paging Procedure
- 14.1.3. Service Request Procedure
- 14.2. Cell Reselection in RRC_IDLE
- 14.2.1. Objectives
- 14.2.2. Measurement Triggering on the Same LTE Frequency
- 14.2.3. Cell Reselection to the Same LTE Frequency
- 14.2.4. Measurement Triggering on a Different LTE Frequency
- 14.2.5. Cell Reselection to a Different LTE Frequency
- 14.2.6. Fast Moving Mobiles
- 14.2.7. Tracking Area Update Procedure
- 14.2.8.Network Reselection
- 14.3. Measurements in RRC_CONNECTED
- 14.3.1. Objectives
- 14.3.2. Measurement Procedure
- 14.3.3. Measurement Reporting
- 14.3.4. Measurement Gaps
- 14.4. Handover in RRC_CONNECTED
- 14.4.1.X2 Based Handover Procedure
- 14.4.2. Handover Variations
- References
- 15.1. System Architecture
- 15.1.1. Architecture of the 2G/3G Packet Switched Domain
- 15.1.2.S3/S4-Based Inter-operation Architecture
- 15.1.3. Gn/Gp-Based Inter-operation Architecture
- 15.2. Power-On Procedures.
- 15.3. Mobility Management in RRC_IDLE
- 15.3.1. Cell Reselection
- 15.3.2. Routing Area Update Procedure
- 15.3.3. Idle Mode Signalling Reduction
- 15.4. Mobility Management in RRC_CONNECTED
- 15.4.1. RRC Connection Release with Redirection
- 15.4.2. Measurement Procedures
- 15.4.3. Optimized Handover
- References
- 16.1. Generic System Architecture
- 16.1.1.Network-Based Mobility Architecture
- 16.1.2. Host-Based Mobility Architecture
- 16.1.3. Access Network Discovery and Selection Function
- 16.2. Generic Signalling Procedures
- 16.2.1. Overview of the Attach Procedure
- 16.2.2. Authentication and Key Agreement
- 16.2.3. PDN Connectivity Establishment
- 16.2.4. Radio Access Network Reselection
- 16.3. Inter-Operation with cdma2000 HRPD
- 16.3.1. System Architecture
- 16.3.2. Preregistration with cdma2000
- 16.3.3. Cell Reselection in RRC_IDLE
- 16.3.4. Measurements and Handover in RRC_CONNECTED
- References
- 17.1. Self-Configuration of an eNB.
- 17.1.1. Automatic Configuration of the Physical Cell Identity
- 17.1.2. Automatic Neighbour Relations
- 17.1.3. Random Access Channel Optimization
- 17.2. Inter-Cell Interference Coordination
- 17.3. Mobility Management
- 17.3.1. Mobility Load Balancing
- 17.3.2. Mobility Robustness Optimization
- 17.3.3. Energy Saving
- 17.4. Radio Access Network Information Management
- 17.4.1. Introduction
- 17.4.2. Transfer of System Information
- 17.4.3. Transfer of Self-Optimization Data
- 17.5. Drive Test Minimization
- References
- 18.1. Multimedia Broadcast/Multicast Service
- 18.1.1. Introduction
- 18.1.2. Multicast/Broadcast over a Single Frequency Network
- 18.1.3. Implementation of MBSFN in LTE
- 18.1.4. Architecture of MBMS
- 18.1.5. Operation of MBMS
- 18.2. Location Services
- 18.2.1. Introduction
- 18.2.2. Positioning Techniques
- 18.2.3. Location Service Architecture
- 18.2.4. Location Service Procedures
- 18.3. Other Enhancements in Release 9.
- 18.3.1. Dual Layer Beamforming
- 18.3.2.Commercial Mobile Alert System
- References
- 19.1. Carrier Aggregation
- 19.1.1. Principles of Operation
- 19.1.2. UE Capabilities
- 19.1.3. Scheduling
- 19.1.4. Data Transmission and Reception
- 19.1.5. Uplink and Downlink Feedback
- 19.1.6. Other Physical Layer and MAC Procedures
- 19.1.7. RRC Procedures
- 19.2. Enhanced Downlink MIMO
- 19.2.1. Objectives
- 19.2.2. Downlink Reference Signals
- 19.2.3. Downlink Transmission and Feedback
- 19.3. Enhanced Uplink MIMO
- 19.3.1. Objectives
- 19.3.2. Implementation
- 19.4. Relays
- 19.4.1. Principles of Operation
- 19.4.2. Relaying Architecture
- 19.4.3. Enhancements to the Air Interface
- 19.5. Heterogeneous Networks
- 19.5.1. Introduction
- 19.5.2. Enhanced Inter-Cell Interference Coordination
- 19.5.3. Enhancements to Self-Optimizing Networks
- 19.6. Traffic Offload Techniques
- 19.6.1. Local IP Access
- 19.6.2. Selective IP Traffic Offload.
- 19.6.3. Multi-Access PDN Connectivity
- 19.6.4. IP Flow Mobility
- 19.7. Overload Control for Machine-Type Communications
- References
- 20.1. Coordinated Multipoint Transmission and Reception
- 20.1.1. Objectives
- 20.1.2. Scenarios
- 20.1.3.CoMP Techniques
- 20.1.4. Standardization
- 20.1.5. Performance
- 20.2. Enhanced Physical Downlink Control Channel
- 20.3. Interference Avoidance for in Device Coexistence
- 20.4. Machine-Type Communications
- 20.4.1. Device Triggering
- 20.4.2. Numbering, Addressing and Identification
- 20.5. Mobile Data Applications
- 20.6. New Features in Release 12
- 20.6.1. Proximity Services and Device to Device Communications
- 20.6.2. Dynamic Adaptation of the TDD Configuration
- 20.6.3. Enhancements for Machine-Type Communications and Mobile Data
- 20.6.4. Traffic Offloading Enhancements
- 20.7. Release 12 Studies
- 20.7.1. Enhancements to Small Cells and Heterogeneous Networks.
- 20.7.2. Elevation Beamforming and Full Dimension MIMO
- References
- 21.1. Delivery of Voice and Text Messages over LTE
- 21.1.1. The Market for Voice and SMS
- 21.1.2. Third Party Voice over IP
- 21.1.3. The IP Multimedia Subsystem
- 21.1.4. VoLGA
- 21.1.5. Dual Radio Devices
- 21.1.6. Circuit Switched Fallback
- 21.2. System Architecture
- 21.2.1. Architecture of the 2G/3G Circuit Switched Domain
- 21.2.2. Circuit Switched Fallback Architecture
- 21.3. Attach Procedure
- 21.3.1.Combined EPS/IMSI Attach Procedure
- 21.3.2. Voice Domain Preference and UE Usage Setting
- 21.4. Mobility Management
- 21.4.1.Combined Tracking Area/Location Area Update Procedure
- 21.4.2. Alignment of Tracking Areas and Location Areas
- 21.4.3. Cell Reselection to UMTS or GSM
- 21.5. Call Setup
- 21.5.1. Mobile-Originated Call Setup using RRC Connection Release
- 21.5.2. Mobile Originated Call Setup using Handover.
- 21.5.3. Signalling Messages in the Circuit Switched Domain
- 21.5.4. Mobile-Terminated Call Setup
- 21.5.5. Returning to LTE
- 21.6. SMS over SGs
- 21.6.1. System Architecture
- 21.6.2. SMS Delivery
- 21.7. Circuit Switched Fallback to cdma2000 1xRTT
- 21.8. Performance of Circuit Switched Fallback
- References
- 22.1. Introduction
- 22.1.1. The IP Multimedia Subsystem
- 22.1.2. VoLTE
- 22.1.3. Rich Communication Services
- 22.2. Hardware Architecture of the IMS
- 22.2.1. High-Level Architecture
- 22.2.2. Call Session Control Functions
- 22.2.3. Application Servers
- 22.2.4. Home Subscriber Server
- 22.2.5. User Equipment
- 22.2.6. Relationship with LTE
- 22.2.7. Border Control Functions
- 22.2.8. Media Gateway Functions
- 22.2.9. Multimedia Resource Functions
- 22.2.10. Security Architecture
- 22.2.11. Charging Architecture
- 22.3. Signalling Protocols
- 22.3.1. Session Initiation Protocol
- 22.3.2. Session Description Protocol.
- 22.3.3. Other Signalling Protocols
- 22.4. Service Provision in the IMS
- 22.4.1. Service Profiles
- 22.4.2. Media Feature-Tags
- 22.4.3. The Multimedia Telephony Service for IMS
- 22.5. VoLTE Registration Procedure
- 22.5.1. Introduction
- 22.5.2. LTE Procedures
- 22.5.3. Contents of the REGISTER Request
- 22.5.4. IMS Registration Procedure
- 22.5.5. Routing of SIP Requests and Responses
- 22.5.6. Third-Party Registration with Application Servers
- 22.5.7. Subscription for Network-Initiated Deregistration
- 22.6. Call Setup and Release
- 22.6.1. Contents of the INVITE Request
- 22.6.2. Initial INVITE Request and Response
- 22.6.3. Acceptance of the Initial INVITE
- 22.6.4. Establishment of a Call to a Circuit Switched Network
- 22.6.5. Call Release
- 22.7. Access Domain Selection
- 22.7.1. Mobile-Originated Calls
- 22.7.2. Mobile-Terminated Calls
- 22.8. Single Radio Voice Call Continuity
- 22.8.1. Introduction
- 22.8.2. SRVCC Architecture.
- 22.8.3. Attach, Registration and Call Setup Procedures
- 22.8.4. Handover Preparation
- 22.8.5. Updating the Remote Leg
- 22.8.6. Releasing the Source Leg
- 22.8.7. Handover Execution and Completion
- 22.8.8. Evolution of SRVCC
- 22.9. IMS Centralized Services
- 22.10. IMS Emergency Calls
- 22.10.1. Emergency Call Architecture
- 22.10.2. Emergency Call Setup Procedure
- 22.11. Delivery of SMS Messages over the IMS
- 22.11.1. SMS Architecture
- 22.11.2. Access Domain Selection
- References
- 23.1. Peak Data Rates of LTE and LTE-Advanced
- 23.1.1. Increase of the Peak Data Rate
- 23.1.2. Limitations on the Peak Data Rate
- 23.2. Coverage of an LTE Cell
- 23.2.1. Uplink Link Budget
- 23.2.2. Downlink Link Budget
- 23.2.3. Propagation Modelling
- 23.2.4. Coverage Estimation
- 23.3. Capacity of an LTE Cell
- 23.3.1. Capacity Estimation
- 23.3.2. Cell Capacity Simulations
- 23.4. Performance of Voice over IP
- 23.4.1. AMR Codec Modes.
- 23.4.2. Transmission of AMR Frames on the Air Interface
- 23.4.3. Transmission of AMR Frames in the Fixed Network
- References.