Discrete element model and simulation of continuous materials behavior set. Volume 1, Discrete element method to model 3D continuous materials /

Complex behavior models (plasticity, cracks, visco elascticity) face some theoretical difficulties for the determination of the behavior law at the continuous scale. When homogenization fails to give the right behavior law, a solution is to simulate the material at a meso scale in order to simulate...

Full description

Saved in:
Bibliographic Details
Main Author: Jebahi, Mohamed (Author)
Format: Electronic eBook
Language:English
Published: London, England ; Hoboken, New Jersey : ISTE : Wiley, 2015.
Series:Numerical methods in engineering series.
Subjects:
Online Access: Full text (Wentworth users only)
Local Note:ProQuest Ebook Central

MARC

LEADER 00000cam a2200000 i 4500
001 in00000095147
006 m o d
007 cr cn|||||||||
008 150312t20152015enka ob 001 0 eng d
005 20240806201052.4
019 |a 905984813  |a 961695920  |a 962723309  |a 1055379633  |a 1066495744  |a 1081223602  |a 1101715055  |a 1228580930 
020 |a 9781119102915  |q (e-book) 
020 |a 111910291X  |q (e-book) 
020 |a 1848217706 
020 |a 9781848217706 
020 |z 9781848217706 
020 |z 9781119102755 
020 |z 1119102758 
035 |a (OCoLC)905919597  |z (OCoLC)905984813  |z (OCoLC)961695920  |z (OCoLC)962723309  |z (OCoLC)1055379633  |z (OCoLC)1066495744  |z (OCoLC)1081223602  |z (OCoLC)1101715055  |z (OCoLC)1228580930 
035 |a (OCoLC)ocn905919597 
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d YDXCP  |d EBLCP  |d RECBK  |d DEBSZ  |d COO  |d OCLCF  |d OCLCQ  |d K6U  |d IDB  |d OCLCQ  |d COCUF  |d CCO  |d PIFFA  |d FVL  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d UX1  |d OCLCQ  |d TUHNV  |d OCLCO  |d OCLCQ  |d OCLCO 
050 4 |a TA403.6  |b .D573 2015eb 
066 |c (S 
070 |a TA418.78  |b .J43 2015 
082 0 4 |a 620.11015118  |2 23 
245 0 0 |a Discrete element model and simulation of continuous materials behavior set.  |n Volume 1,  |p Discrete element method to model 3D continuous materials /  |c Mohamed Jebahi [and three others]. 
264 1 |a London, England ;  |a Hoboken, New Jersey :  |b ISTE :  |b Wiley,  |c 2015. 
264 4 |c ©2015 
300 |a 1 online resource (198 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Numerical Methods in Engineering Series 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Title Page; Copyright; Contents; List of Figures; List of Tables; Preface; Introduction; I.1. Toward discrete element modeling of continuous materials; I.2. Scope and objective; I.3. Organization; 1: State of the Art: Discrete Element Modeling; 1.1. Introduction; 1.2. Classification of discrete methods; 1.2.1. Quantum mechanical methods; 1.2.2. Atomistic methods; 1.2.3. Mesoscopic discrete methods; 1.2.3.1. Lattice methods; 1.2.3.2. Smooth contact particle methods; 1.2.3.3. Non-smooth contact particle models; 1.2.3.4. Hybrid lattice-particle models. 
505 8 |a 1.3. Discrete element method for continuous materials1.4. Discrete-continuum transition: macroscopic variables; 1.4.1. Stress tensor for discrete systems; 1.4.2. Strain tensor for discrete systems; 1.4.2.1. Equivalent continuum strains; 1.4.2.2. Best-fit strains; 1.4.2.3. Satake strain; 1.5. Conclusion; 2: Discrete Element Modeling of Mechanical Behavior of Continuous Materials; 2.1. Introduction; 2.2. Explicit dynamic algorithm; 2.3. Construction of the discrete domain; 2.3.1. The cooker compaction algorithm; 2.3.1.1. Stopping criterion of compaction process; 2.3.1.2. Filling process. 
505 8 |6 880-01  |a 2.4.2.2.1. Microscopic Poisson's ratio influence2.4.2.2.2. Microscopic Young's modulus influence; 2.4.2.2.3. Microscopic radius ratio influence; 2.4.2.3. Calibration method for static parameters; 2.4.2.4. Convergence study; 2.4.2.5. Validation; 2.4.3. Calibration of the cohesive beam dynamic parameters; 2.4.3.1. Calibration method for dynamic parameters; 2.4.3.2. Validation; 2.5. Conclusion; 3: Discrete Element Modeling of Thermal Behavior of Continuous Materials; 3.1. Introduction; 3.2. General description of the method; 3.2.1. Characterization of field variable variation in discrete domain. 
505 8 |a 3.2.2. Application to heat conduction3.3. Thermal conduction in 3D ordered discrete domains; 3.4. Thermal conduction in 3D disordered discrete domains; 3.4.1. Determination of local parameters for each discrete element; 3.4.2. Calculation of discrete element transmission surface; 3.4.3. Calculation of local volume fraction; 3.4.4. Interactions between each discrete element and its neighbors; 3.5. Validation; 3.5.1. Cylindrical beam in contact with a hot plane; 3.5.2. Dynamically heated sheet; 3.6. Conclusion; 4: Discrete Element Modeling of Brittle Fracture; 4.1. Introduction. 
520 |a Complex behavior models (plasticity, cracks, visco elascticity) face some theoretical difficulties for the determination of the behavior law at the continuous scale. When homogenization fails to give the right behavior law, a solution is to simulate the material at a meso scale in order to simulate directly a set of discrete properties that are responsible of the macroscopic behavior. The discrete element model has been developed for granular material. The proposed set shows how this method is capable to solve the problem of complex behavior that are linked to discrete meso scale effects. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Materials  |x Mathematical models. 
650 0 |a Discrete element method. 
650 7 |a discrete element method.  |2 aat 
700 1 |a Jebahi, Mohamed,  |e author. 
776 0 8 |i Print version:  |t Discrete element model and simulation of continuous materials behavior set. Volume 1, Discrete element method to model 3D continuous materials.  |d London, England ; Hoboken, New Jersey : iSTE : Wiley, ©2015  |h xxix, 163 pages  |k Numerical methods in engineering series.  |z 9781848217706 
830 0 |a Numerical methods in engineering series. 
852 |b Ebooks  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/wit/detail.action?docID=1980999  |z Full text (Wentworth users only)  |t 0 
880 8 |6 505-01/(S  |a 2.3.1.3. Overlapping removing2.3.2. Geometrical characterization of the discrete domain; 2.3.2.1. Geometrical isotropy and granulometry; 2.3.2.2. Average coordination number; 2.3.2.3. Discrete domain fineness; 2.4. Mechanical behavior modeling; 2.4.1. Cohesive beam model; 2.4.1.1. Analytical model; 2.4.1.2. Strain energy computation; 2.4.2. Calibration of the cohesive beam static parameters; 2.4.2.1. Quasistatic tensile test description; 2.4.2.1.1. From discrete to continuous geometry; 2.4.2.1.2. Loading; 2.4.2.1.3. EM and νM computation; 2.4.2.2. Parametric study. 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1980999 
947 |a FLO  |x pq-ebc-base 
999 f f |s 274fb6c5-39bf-46e5-bad3-e2ddaf26459f  |i a2a941ee-b01b-49d7-aa62-1a1214fa3e65  |t 0 
952 f f |a Wentworth Institute of Technology  |b Main Campus  |c Wentworth Library  |d Ebooks  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/wit/detail.action?docID=1980999  |y Full text (Wentworth users only)